Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

Abstract

Intensification and specialization of farming systems in Europe and elsewhere has resulted in poor crop rotations, with low plant and animal diversity. This has resulted in more uniform landscapes, soil carbon loss and low efficiency in nutrient cycling, particularly in regions dominated by annual crops. Inclusion of ley in crop rotations is expected to increase soil organic carbon (SOC) stocks, nitrogen availability and improve soil physical properties. The effect of ley-arable rotations versus continuous annual cropping on soil quality, soil organic carbon and soil biology was assessed by summarizing and discussing results from publications from long-term experiments in Norway and Sweden. These studies support the hypotheses that the inclusion of leys in crop rotations promotes soil fertility and carbon sequestration in Northern Europe, supplies nutrients to subsequent crops and improves soil physical properties. However, one or two years of ley in rotations may not be enough for maintaining SOC and good soil structure over time. For keeping the relatively high SOC concentrations occurring at many sites in Northern Europe, the proportion of ley in rotation should be at least 50%.

Abstract

In Norway, Fusarium diseases and associated mycotoxin contamination in spring oats occasionally cause problems for growers, livestock producers and the food and feed industries. Besides weather factors, such as rainfall and temperature in the critical periods around flowering and before harvest, inoculum production and disease development are influenced by agricultural practices. The occurrence of Fusarium graminearum and DON in oat grain lots do not generally correlate with that of Fusarium langsethiae and HT-2/T-2-toxins. Therefore, to develop a robust disease management strategy, there is a need to reveal the influence of weather and agricultural practice on disease development in oats for both these fungal species. Through various research projects NIBIO researchers have performed field trials to study the effects of straw management, tillage practice, cultivar, and chemical and biological control treatments on the development of Fusarium spp. and mycotoxins in oats. In particular we have investigated whether the amount of straw residues and tillage practice influences the survival of Fusarium spp. in residues, and the subsequent Fusarium spp. infection of the harvested grains. In addition, Fusarium spp. DNA and mycotoxin content (DON and HT-2/T-2) have been analysed in oats from current official cultivar trials. This work has been a collaboration between NIBIO and the Norwegian Agricultural Extension Service. Results will be presented on the Fusarium spp. and mycotoxin contamination of grains harvested from oats grown under various agricultural practices. High incidence of Fusarium avenaceum are often observed in harvested grains as well as straw residues. Fusarium graminearum is also commonly detected. Despite the high concentrations of F. langsethiae DNA and HT-2/T-2 toxins sometimes recorded in oat grain, only low levels of F. langsethiae have been detected in crop residues and air samples. We speculate that the life cycle of F. langsethiae differs from those of F. graminearum and F. avenaceum with regards to survival, inoculum production and dispersal.

2022

Abstract

Soil organic carbon (SOC) was studied at 0–45 cm depth after 28 years of cropping with arable and mixed dairy rotations on a soil with an initial SOC level of 2.6% at 0–30 cm. Measurements included both carbon concentration (SOC%) and soil bulk density (BD). Gross C input was calculated from yields. Averaged over all systems, topsoil SOC% declined significantly (−0.20% at 0–15 cm, p = 0.04, −0.39% at 15–30 cm, p = 0.05), but changed little at 30–45 cm (+0.11%, p = 0.15). Declines in topsoil SOC% tended to be greater in arable systems than in mixed dairy systems. Changes in BD were negatively related to those in SOC%, emphasizing the need to measure both when assessing SOC stocks. The overall SOC mass at 0–45 cm declined significantly from 98 to 89 Mg ha−1, representing a loss of 0.3% yr−1 of the initial SOC. Variability within systems was high, but arable cropping showed tendencies of high SOC losses, whilst SOC stocks appeared to be little changed in conventional mixed dairy with 50% ley and organic mixed dairy with 75% ley. The changes were related to the level of C input. Mean C input was 22% higher in mixed dairy than in arable systems.

Abstract

Increased interest in plant-based food in Norway is creating a demand for more locally produced raw material. In addition, the feed industry has the goal to reduce its dependency on imported protein and use more nationally produced plant proteins. In a preliminary research project funded by the Research funding for the Agriculture and the Food industry (FFL/JA) we are investigating the potential for cultivating quinoa, buckwheat, lentils, chickpea, lupin and soya in Southern Norway. While some of these crops have been grown on a very small scale, we lack knowledge about cultivation under Norwegian conditions. These six crops can be cultivated with the same equipment as cereals; thus, they represent interesting candidates to be included in a cereal rotation. Two fields were established in Agder and Innlandet in spring 2021. Two cultivars of each crop, selected for their earliness, were sowed at two different sowing dates between 24th April and 21st May. Soya was sown only once. Pesticides and herbicides were not applied in the trials. Growth stages were recorded every week. A demonstration field was sown in Vestfold with one sowing date per crop between 23rd April and 1st June. All of the crops were harvested between 25th August and 4th November in Agder. The trial in Innlandet was harvested between 15th September and 27th October. However, chickpeas and one cultivar of soya were not ripe in November and were not harvested. The field in Vestfold was harvested between 1st September and 2nd December (after swathing for the latest). Weeds and length of the growing season were the two main challenging parameters impacting yields in 2021. Quinoa was most affected by weeds while chickpeas and soya could not be harvested in all three locations. Both lentils, buckwheat and lupin showed a potential in the three regions in 2021, while soya could be a candidate in the most southern area. Similar field trials are repeated in 2022.