Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

To document

Abstract

Didemnum vexillum is colonial sea squirt, a marine species which originates from the northwest Pacific; it was first recorded in Norway in November 2020. Didemnum vexillum is an alien species, meaning that it is a species that has been transferred from its original region to other regions of the world through human activity, and it had not previously been recorded in Norwegian waters. The species is regarded as having great invasive potential and having strong negative ecological effects on biodiversity. It is also considered to pose a risk to marine industries such as shipping and aquaculture, with possible major negative economic impacts.

To document

Abstract

VKM has evaluated the risk to biodiversity from allowing private import and keeping of the Northern Cardinal as a caged bird in Norway, for birds acquired through the bird trade. VKM has reviewed the invasion ecology of non-native birds in general and of the Northern Cardinal specifically. The assessment includes evaluation of various mechanisms that invasive birds generally have a negative impact through, and includes competition, hybridization, spread of pathogens and interactions with other alien species in Norway. VKM has also evaluated two different scenarios establishment and how climate change can influence both the negative impact and the likelihood of establishment. Overall, VKM finds that there is low risk in regards negative effects on biodiversity in Norway in regard to import and keeping of the Northern Cardinal.

To document

Abstract

VKM has evaluated to what extent keeping of cats pose a risk to biodiversity in Norway. Risks were assessed separately for threats to biodiversity from direct predation, indirect (non-lethal) effects, competition with other wildlife and spread of infectious organisms. VKM also assessed the risk of reduced animal welfare related to the keeping of domestic cats, both for the cats and their prey. In addition, VKM has assessed a range of risk-reducing measures aimed at minimizing the risk for negative impacts on biodiversity and animal welfare. Overall, VKM find that the risk of negative impact on vulnerable birds and red-listed mammalian species are high under certain conditions. VKM also find that there is a considerable risk associated with increased spread of infectious organisms from cats to wildlife and other domestic species. Some of these infectious organisms may also infect humans. With respect to mitigation measures, VKM concludes that measures focused on limiting cats’ access to prey populations are likely to yield the most positive outcomes in terms of mitigating the adverse impact on biodiversity.

To document

Abstract

Key words: apiculture, biological control, Norwegian Environment Agency, Norwegian Scientific Committee for Food and Environment, predatory mites, risk assessment, varroa Introduction The Norwegian Environment Agency (NEA) have asked the Norwegian Scientific Committee for Food and Environment for an assessment of adverse impacts on biodiversity concerning import and release of the predatory mite Stratiolaelaps scimitus as measure against varroa mites (Varroa destructor) in apiaries. The predatory mite is already in use in Norwegian greenhouses and polytunnels as a biological control agent against dark-winged fungus gnats in a various of plant cultures. The NEA has received an application for a new type of use: to combat varroa mites in apiaries. Background Varroa destructor (the varroa mite) is a species of parasitic mite that feeds externally on honeybees; it is considered one of the major threats to beekeeping world-wide due to its parasitic behaviour and because it acts as a vector for several viral and bacterial bee pathogens. Beekeepers in North America have begun experimenting with introducing Stratiolaelaps scimitus, a commercially available predaceous mite originally used for biocontrol in greenhouses and polytunnels, to control varroa mites, and several studies on the use of the mite in this context have been published recently. The Norwegian Environment Agency has asked VKM to assess the risk to biological diversity in Norway associated with this new use of S. scimitus, and to assess the effects of climate change on any risks that are proposed. Stratiolaelaps scimitus is a tiny (0.5 mm), soil-dwelling predaceous mite that in nature feeds on a wide variety of soil invertebrates, including fly larvae, nematodes, nymphs of thrips, potworms (oligochaetes), springtails, and other mites. For over three decades, Stratiolaelaps scimitus has been produced commercially and the species is now used globally for biological control. The mite is applied to control a wide variety of organisms harmful to food production or to the production of ornamental plants, but especially to combat infestations of fungus gnat larvae, spider mites, flower thrips, and certain plant-feeding nematodes. The species is already used as a biocontrol agent in Norway in greenhouses, open plastic polytunnels used for protecting crops, and in various indoor plantings and fungiculture. Methods VKM established a project group with expertise in entomology, invasion ecology, honeybee behaviour and ecology, and risk analysis of biological control agents. The group conducted systematic literature searches and scrutinized the relevant literature that was found. In the absence of Norwegian studies, VKM relied on literature from other countries. Results and conclusions This VKM assessment concludes with medium confidence that introducing S. scimitus for use in beehives would not significantly increase the probability of establishment and spread of S. scimitus above that of its current use. We point out that there is no evidence that continuous use of S. scimitus in Norway, over decades, has led to its establishment outside of enclosures, including open polytunnels. The optimal temperature for development and reproduction is far higher than what is normally observed in Norway (~28 °C). Although lethal temperature has been reported to be as low as –5.2 °C, we still conclude that S. scimitus would not be able to establish permanent populations in Norway, not even in the southern part of the country as such temperatures are expected to occur in some years throughout the country. Future climate change is not believed to alter this conclusion, since periods with lethally cold temperatures are expected to still occur in the future.

2022

Abstract

Plant genetic resources form the biological basis for all plant-based agricultural production. In the genetic diversity lie opportunities to adjust, improve and adapt the crop production to current or future needs. In addition, the diversity of species and varieties in Norwegian agriculture represents an important part of our cultural heritage. Conservation and sustainable use of plant genetic resources is a global concern and FAO has established a global action plan that highlights priorities for conservation and use of plant genetic diversity at national level. This report points to results, trends and challenges within this field in Norway and is the Norwegian contribution to the FAO report "Third State of the World's Plant Genetic Resources" (expected 2023).

To document

Abstract

The alpine treeline ecotone is expected to move upwards in elevation with global warming. Thus, mapping treeline ecotones is crucial in monitoring potential changes. Previous remote sensing studies have focused on the usage of satellites and aircrafts for mapping the treeline ecotone. However, treeline ecotones can be highly heterogenous, and thus the use of imagery with higher spatial resolution should be investigated. We evaluate the potential of using unmanned aerial vehicles (UAVs) for the collection of ultra-high spatial resolution imagery for mapping treeline ecotone land covers. We acquired imagery and field reference data from 32 treeline ecotone sites along a 1100 km latitudinal gradient in Norway (60–69°N). Before classification, we performed a superpixel segmentation of the UAV-derived orthomosaics and assigned land cover classes to segments: rock, water, snow, shadow, wetland, tree-covered area and five classes within the ridge-snowbed gradient. We calculated features providing spectral, textural, three-dimensional vegetation structure, topographical and shape information for the classification. To evaluate the influence of acquisition time during the growing season and geographical variations, we performed four sets of classifications: global, seasonal-based, geographical regional-based and seasonal-regional-based. We found no differences in overall accuracy (OA) between the different classifications, and the global model with observations irrespective of data acquisition timing and geographical region had an OA of 73%. When accounting for similarities between closely related classes along the ridge-snowbed gradient, the accuracy increased to 92.6%. We found spectral features related to visible, red-edge and near-infrared bands to be the most important to predict treeline ecotone land cover classes. Our results show that the use of UAVs is efficient in mapping treeline ecotones, and that data can be acquired irrespective of timing within a growing season and geographical region to get accurate land cover maps. This can overcome constraints of a short field-season or low-resolution remote sensing data.

To document

Abstract

Background Spring hunting for ducks (Lodden in Northern Sami) is part of the Sami hunting and trapping culture. In Norway, this traditional hunting has been permitted in Kautokeino Municipality in accordance with the exception provision in the Wildlife Act Section 15, with quotas for males of several duck species. However, hunting in the spring may be in conflict with the Nature Diversity Act's principle for species management, saying (quote from Section 15): “Unnecessary harm and suffering caused to animals occurring in the wild and their nests, lairs and burrows shall be avoided. Likewise, unnecessary pursuing of wildlife shall be avoided.” Furthermore, in accordance with international legislation and agreements, the Wildlife Act (Section 9) states that the hunting season should not be set to the nesting and breeding season for the species in question. The Norwegian Environment Agency (NEA) asked VKM to (1) assess risk and risk-reducing measures on biodiversity and animal welfare when conducting spring hunting of ducks. The terms of reference were additionally clarified by the NEA to include assessments of the risks associated with hunting quotas of up to 150, 300, and 500 male individuals, on the populations of mallard (Anas platyrhynchos), tufted duck (Aythya fuligula), velvet scoter (Melanitta fusca), common scoter (Melanitta nigra), long-tailed duck (Clangula hyemalis), and red-breasted merganser (Mergus serrator). VKM was furthermore asked to (2) point out risk-reducing measures in scenarios with hunting bags corresponding to the mentioned quotas of all the six species. Method VKM appointed a project group to answer the request from NEA and assess the risks to biodiversity and animal welfare posed by spring hunting for adult male ducks. The project group narrowed down the scope of the biodiversity risk assessment to encompass risks for local populations of six target species: mallard, tufted duck, velvet scoter, common scoter, long-tailed duck, and red-breasted merganser, and non-target migratory waterbirds. Negative impacts on biodiversity was defined as negative effects on population viability. The VKM project group gathered data from publications retrieved from literature searches and reports from Kautokeino municipality to the Finnmark Estate (Finnmarkseiendommen), which were made available to the group by the Norwegian Environment Agency. Hunting statistics were acquired from Statistics Norway (Statistisk sentralbyrå; SSB). During the assessment, several critical knowledge gaps and uncertainties were identified. The main obstacle for assessment of the impact of spring hunting on viability of local populations in Kautokeino, is the lack of data on relevant population sizes and demographic rates for the six target species. The available population estimates are partly based on almost 30-year-old bird counts. In addition, knowledge about spatial and temporal distributions of each species, combined with local or remote-sensed data on ice breakup, is needed to estimate the proportion of the population being effectively hunted in early spring when ducks are congregating on available ice-free waters. Such knowledge, combined with information about where, when, how and by how many hunters the hunting is performed, is also critical for sound assessments of risk to biodiversity and harm to bird welfare. Improved data on hunting bags (reliable, spatially explicit, and detailed) and frequency of wounding and crippling is also needed to provide accurate assessments. The project group performed modelling of harvest scenarios for a range of conditions (e.g., number of birds harvested, reduced breeding success caused by indirect effects of disturbance, environmental stochasticity, and spatial variation in habitat) to assess how sensitive the populations are to different parameters and model assumptions. ..............................