Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2022

Abstract

Dette er en oppstartrapport for NIBIOs bidrag i prosjektet “E2SOILAGRI”. Rapporten sammenfatter informasjon om det latviske jordinformasjonssystemet som framkom gjennom intervjuer med part-nere og interessenter i prosjektet. Arbeidet er definert som underaktivitet 4.1 i Terms of Reference for NIBIOs rolle i prosjektet.

2021

To document

Abstract

The role of soils in the global carbon cycle and in reducing GHG emissions from agriculture has been increasingly acknowledged. The ‘4 per 1000’ (4p1000) initiative has become a prominent action plan for climate change mitigation and achieve food security through an annual increase in soil organic carbon (SOC) stocks by 0.4%, (i.e. 4‰ per year). However, the feasibility of the 4p1000 scenario and, more generally, the capacity of individual countries to implement soil carbon sequestration (SCS) measures remain highly uncertain. Here, we evaluated country-specific SCS potentials of agricultural land for 24 countries in Europe. Based on a detailed survey of available literature, we estimate that between 0.1% and 27% of the agricultural greenhouse gas (GHG) emissions can potentially be compensated by SCS annually within the next decades. Measures varied widely across countries, indicating differences in country-specific environmental conditions and agricultural practices. None of the countries' SCS potential reached the aspirational goal of the 4p1000 initiative, suggesting that in order to achieve this goal, a wider range of measures and implementation pathways need to be explored. Yet, SCS potentials exceeded those from previous pan-European modelling scenarios, underpinning the general need to include national/regional knowledge and expertise to improve estimates of SCS potentials. The complexity of the chosen SCS measurement approaches between countries ranked from tier 1 to tier 3 and included the effect of different controlling factors, suggesting that methodological improvements and standardization of SCS accounting are urgently required. Standardization should include the assessment of key controlling factors such as realistic areas, technical and practical feasibility, trade-offs with other GHG and climate change. Our analysis suggests that country-specific knowledge and SCS estimates together with improved data sharing and harmonization are crucial to better quantify the role of soils in offsetting anthropogenic GHG emissions at global level.

Abstract

Denne publikasjonen presenterer en ny metodikk for estimering av endringer i lageret av jordkarbon som følge av arealbruksendringer på mineraljord. Metodikken er utviklet for bruk i den nasjonale rapporteringen av arealbrukssektoren under FNs klimakonvensjon. Metodikken baserer seg på den enkleste tilnærming i følge IPCC sine retningslinjer, en såkaldt Tier 1. Tier 1 metodikken baseres i stor grad på standardverdier fra retningslinjene (IPCC default), men trenger en kopling mot nasjonal arealinformasjon. Denne koplingen beskrives i rapporten. Metodikken tar utgangspunkt i standardverdier for lageret av jordkarbon (SOCREF). Disse er basert på jordtype-grupperinger og klimasone som stammer fra en verdensdekkende jorddatabase. Endringer i jordkarbon etter arealbruksendring estimeres ved hjelp av SOCREF i kombinasjon med et sett faktorer (også standardverdier) som er arealbruksavhengige. Metodikken legger til grunn at endringer i jordkarbon skjer lineært over 20 år (ifølge 2006 IPCC Guidelines). Grunnleggende informasjon for å kunne kople standardverdier mot arealer på en konsistent måte er stort sett manglende for Norge på nasjonal skala. Rapporten gir derfor detaljert informasjon om de datakildene som har vært brukt til å kunne definere hvilke standariserte verdier som tilhører et bestemt areal i overgang....

Abstract

To increase the annual uptake of CO2 as well as the long-term storage of carbon (C) in forests, the Norwegian government consider large-scale replacements of native, deciduous forests with faster-growing species like Norway spruce. To assess the effects of tree species change on ecosystem C and nitrogen (N) stocks and soil chemistry, we used a paired plot approach including stands of native downy birch and planted 45 – 60-year-old Norway spruce. The birch stands were used as reference for the assessment of differences following the tree species change. We found significantly higher C and N stocks in living tree biomass in the spruce stands, whereas no significant differences were found for dead wood. The cover of understory species groups, and the C and N stocks of the aboveground understory vegetation was significantly higher in the birch stands. The tree species change did not affect the soil organic carbon (SOC) stock down to 1 m soil depth; however, the significantly higher stock in the forest floor of the spruce stands suggested a re-distribution of SOC within the profile. There was a significant positive correlation between the SOC stock down to 30 cm soil depth and the total ecosystem C stock for the birch stands, and a negative correlation for the spruce stands. Significant effects of tree species change were found for C and N concentrations, C/N, exchangeable acidity, base saturation, and exchangeable Ca, K, Mg, Na, S, and Fe in the organic horizon or the upper mineral soil layer. The total ecosystem C stock ranged between 197 and 277 Mg ha-1 for the birch stands, and 297 and 387 Mg ha-1 for the spruce stands. The ecosystem C accumulation varied between 32 and 142 Mg ha-1 over the past 45-60 years, whereas the net ecosystem C capture was considerably lower and potentially negative. Our results suggest that the potential to meet the governments’ targets to increase C sequestration depend on the C debt incurred from the removed birch stands, the rotation length, and potentially also the susceptibility of the different stand types to future risk factors related to climate change.

To document

Abstract

The use of biomass from forest harvesting residues or stumps for bioenergy has been increasing in the northern European region in the last decade. The present analysis is a regional review from Nordic and UK coniferous forests, focusing on the effects of whole-tree harvesting (WTH) or whole-tree thinning (WTT) and of WTH followed by stump removal (WTH + S) on the forest floor and mineral soil, and includes a wider array of chemistry data than other existing meta-analyses. All intensified treaments led to significant decreases of soil organic carbon (SOC) stock and total N stock in the forest floor (FF), but relative responses compared with stem-only harvesting were less consistent in the topsoil (TS) and no effects were detected in the subsoil (SS). Exchangeable P was reduced in the FF and TS both after WTT and WTH, but significant changes in exchangeable Ca, K, Mg and Zn depended on soil layer and treatment. WTH significantly lowered pH and base saturation (BS) in the FF, but without apparent changes in cation exchange capacity (CEC). The only significant WTH-effects in the SS were reductions in CEC and BS. Spruce- and pine-dominated stands had comparable negative relative responses in the FF for most elements measured except Mg and for pH. Relative responses to intensified harvesting scaled positively with growing season temperature and precipitation for most variables, most strongly in FF, less in the TS, but almost never in the SS, but were negative for P and Al. The greater reduction in FF and TS for soil organic carbon after intensive harvesting decreased with time and meta-regression models predicted an average duration of 20–30 years, while many other chemical parameters generally showed linear effects for 30–45 years after intensified harvesting. Exchangeable acidity (EA), BS and pH all showed the reversed effect with time, i.e. an initial increase and then gradual decrease over 24–45 years. The subsoil never showed a significant temporal effect. Our results generally support greater reductions in nutrient concentrations, SOC and total N in forest soil after WTH compared with SOH in northern temperate and boreal forest ecosystems.

Abstract

Deliverable 2.5. This report contributes to the EJP SOIL roadmap for climate-smart sustainable agricultural soil management and research by identifying current policy targets and realizations and setting soil service aspirational goals by 2050 at the regional/national (Chapter 2) and European scale (Chapter 3). At both scales, the report is based on a desk study of current agricultural soil related policies, followed by a stakeholder consultation. Twenty countries/regions have contributed to the regional/national analyses and 347 different stakeholders have provided their views on soil policy. The policy analysis demonstrates that large differences exist between the number of policy targets per soil challenge. In general, the soil challenge ‘Maintaining/increasing soil organic carbon’ can be considered as the most important soil challenge taking into account both the policies of the participating countries and of the EU level. This soil challenge not only has (one of) the largest share(s) of quantitative and qualitative targets, but also has a large share of the targets for which an indicator and monitoring is in progress or existing. At the EU level, ‘Avoiding contamination’ is also particularly high addressed in policy documents. In the participating countries, other very important soil challenges in policy are ‘Enhance nutrient retention/use efficiency’, ‘Avoid soil erosion’ and ‘Avoid soil contamination’. These soil challenges comprise a large share of soil- and agricultural soil specific targets. However, despite the large number of policy targets, identified by the participating EJP SOIL countries, there is still a shared need for appropriate clear (quantified) policy targets with a specific time horizon, well-defined indicators and a monitoring systems. Similar results are found at the EU level. Policy targets addressing soil challenges are mostly not expressed in quantitative terms and indicators for monitoring policy targets with references to soil challenges were identified for less than half of the cases. From the stakeholder consultations, it becomes clear that for all soil challenges there is still a way to go before future aspirational goals will be met. Generally, when averaging between all countries, the gap between current policy targets and realizations is for most soil challenges considered between large and halfway in reaching the current policy targets and for most soil challenges current policy targets are regarded almost- to- far from being futureproof. In the prioritization of soil challenges, stakeholders at the regional/country and European level, clearly marked maintaining/increasing SOC as the most relevant soil challenge in the upcoming decades. The stakeholders explain the key role of maintaining/increasing soil organic carbon through the multiple interactions with other soil challenges and for climate change mitigation. At the EU level, the second highest ranked prioritization is soil sealing, due to its irreversible nature. This is, however, not reflected at the country level, potentially due to a misinterpretation of soil sealing as compaction by part of the stakeholders. At the country level, enhancing soil nutrient retention/use efficiency was ranked 2nd in the prioritization exercise. Generally, there is an urgency for policy updates, because the current policy is considered unable to tackle the prominent soil challenges. In the report, also the soil related management practices to achieve the aspirational goals have been identified, both in the policy analysis and in the stakeholder consultation. The most prominent differences between policy and stakeholders, is in the emphasis on the use of buffer strips and small landscape elements in policy, while measures in this category are less highly ranked by the stakeholders. On the other hand, conservation agriculture, agro-ecological farming, precision agriculture, incorporation ........

Abstract

No abstract has been registered

Abstract

Deliverable 2.3. This synthesis identifies the available knowledge of achievable carbon sequestration in mineral soils and GHGs mitigation in organic soils in agricultural land, including pasture/grassland across Europe. The inventory of past and current studies on carbon sequestration and GHGs mitigation measures in agricultural soils and the methodology used for the assessment were considered from 25 Member states (MS) across Europe. The stocktake shows that availability of datasets concerning soil carbon sequestration (SCS) is variable among Europe. While northern Europe and central Europe is relatively well studied, there is a lack of studies comprising parts of Southern, Southeaster and Western Europe. Further, it can be concluded that at present country based knowledge and engagement is still poor; very few countries have an idea on their national-wide achievable carbon sequestration potential. The presented national SCS potentials (MS n=13) do however point towards important contributions to mitigate climate change by covering considerable shares of national greenhouse gas emissions from the agricultural sector in the range of 0.1-27 %, underpinning the importance of further investigations. In contrast to mineral soils, effective mitigation measures for organic soils while maintaining industrial agricultural production are still in its infancy. Very few mitigation options exist to mitigate GHG emissions without compromising agricultural production. Most GHG mitigation practices reported by the MS involve the restoration of organic soils, which means a complete abandonment of land from any agricultural use. Only one contribution (NL) reports possible mitigation potentials, which are based on specific water management measures (water level fixation). Nevertheless, there is an increasing awareness of the need of mitigation measures reflected by the several ongoing research projects on peatland management.