Abstract

Fire blight, caused by Erwinia amylovora, was detected for the first time in Norway in 1986. It was a limited outbreak on the south-western coast, only on ornamentals, and particularly on Cotoneaster spp. An action group handling the eradication and containment of the disease was quickly established. Comprehensive statutory powers and resources were given by the government to do surveys and eradicate diseased or symptomless but highly susceptible plant species from contaminated areas. These activities have likely restricted fire blight to the western and southern coastal areas. Eastern and northern parts of Norway are considered free from fire blight. The disease has not been observed in important fruit-growing areas. Uncontrolled movement of beehives from areas with fire blight to areas free from the disease has contributed to its introduction to new areas. From 1969 to 2016 import of most host plants of E. amylovora from countries with fire blight was prohibited. A yearly program for annual surveys in parts of the country with commercial fruit-growing and nurseries, using digital maps on internet connected tablets with GPS and software for in situ registrations, proved to be an efficient method for discovering new outbreaks at an early stage, and to start eradication and thus limit further spread.

To document

Abstract

A new method for pest risk assessment and the identification and evaluation of risk-reducing options is currently under development by the European Food Safety Authority (EFSA) Plant Health Panel. The draft method has been tested on pests of concern to the European Union (EU). The method is adaptable and can focus either on all the steps and sub-steps of the assessment process or on specific parts if necessary. It is based on assessing changes in pest population abundance as the major driver of the impact on cultivated plants and on the environment. Like other pest risk assessment systems the method asks questions about the likelihood and magnitude of factors that contribute to risk. Responses can be based on data or expert judgment. Crucially, the approach is quantitative, and it captures uncertainty through the provision by risk assessors of quantile estimates of the probability distributions for the assessed variables and parameters. The assessment is based on comparisons between different scenarios, and the method integrates risk-reducing options where they apply to a scenario, for example current regulation against a scenario where risk-reducing options are not applied. A strategy has been developed to communicate the results of the risk assessment in a clear, comparable and transparent way, with the aim of providing the requestor of the risk assessment with a useful answer to the question(s) posed to the EFSA Plant Health Panel. The method has been applied to four case studies, two fungi, Ceratocystis platani and Cryphonectria parasitica, the nematode Ditylenchus destructor and the Grapevine flavescence dorée phytoplasma. Selected results from these case studies illustrate the types of output that the method can deliver.

Abstract

Fire blight was detected for the first time in Norway in 1986. It was a limited outbreak on the West Coast, only on ornamentals, particularly on Cotoneaster. An organization for the eradication and containment of fire blight was quickly established, and given comprehensive statutory powers and government resources to do surveys and eradicate diseased plants and highly susceptible plants from contaminated areas. The work has managed to restrict fire blight to the West Coast. Eastern and Northern parts of the country are considered pest free areas. The disease has not moved into important fruit-growing areas. Spread of fire blight to new areas has mainly been due to uncontrolled movement of beehives. From 1969 to 2016 import of all host plants from countries with fire blight has been prohibited. Systematic yearly surveys by foot and car in all parts of the country, using digital maps, internet connected tablets with GPS, and software for registrations made in the field have proved to be an efficient tool to spot new outbreaks at an early stage and start eradication, thus limiting further spread.

Abstract

Climate change and variability associated with natural hazards such as flooding, storms, droughts, increasing temperature, sea level rise and salinity have been a continuous threat to the life and property of Vietnamese society in the past and will continue to do so in the future in not addressed properly. A majority are smallholders, highly vulnerable and without the capacity to invest much in adaptation. Thus any new adaptation measures have to be simple, low cost, help in reducing greenhouse gases (GHGs), and easily adaptable. This manual draws lessons from selected mitigation and adaptation measures evaluated in the project. The manual examines three key aspects needed to scale-up and replicate the measures at the provincial level. The first is the institutional structures, including inputs needed, farmer and stakeholder capacity at the commune, district and provincial levels, barriers to scaling-up, and how to address them. Secondly, how demonstrating effective climate-resilient technologies on farmer fields, closely involving farmers, can provide good results for scaling-up. Third, the impacts of policies to enhance enabling environments for scaling-up. There is a need to prioritize short-term and long-term measures for scaling-up. It is important to generate funds to support the scaling-up, both from state and private sources. Active stakeholder integration is a necessary factor where the authorities, farmers, scientists, civil society and industry are working closely in the process. Knowledge transfer has to be done both through linear and non-linear extension models that will be more effective in providing timely and complete knowledge to farmers and stakeholders. […]

To document

Abstract

The three year multidisciplinary ClimaViet project (July 2013 to June 2016) implemented jointly by the Vietnam Academy of Agricultural Sciences (VAAS) and the Norwegian Institute for Agriculture and Environmental Research (Bioforsk) is focusing mainly on the future climate change impacts on rice production in Vietnam with financial support of the Ministry of Foreign Affairs, Norway. As a first step, the project has reviewed the current studies and programs related to climate change and agriculture taken by other agencies in Vietnam. The existing climate scenarios were downscaled and the climate impacts on seasonality in rainfall leading to droughts and salinity in coastal areas on rice production were assessed. Potential measures leading to improved rice cropping systems and improved nutrient use efficiency are being pilottested in the three study areas located in Nam Dinh, Soc Trang and Tra Vinh provinces. The results are expected to contribute to sustained productivity and climate change mitigation. Towards the end, the project will develop the institutional and policy guidelines required to adopt the potential measures identified and tested in the project. The project involves stakeholders at the provincial and national level (VAAS, MARD, MONRE and other relevant stakeholders) for better uptake of results.

To document

Abstract

ClimaRice II has explored the potential for climate adaptation and mitigation through online dissemination of pest risk forecasts to rice farmers. Weather-driven mathematical models incorporating scientific insights on the biological responses of plant pests to climate can be linked to automatic weather station networks to provide pest risk forecasting / forewarning / early warning to rice farmers

To document

Abstract

No abstract has been registered

Abstract

Introductions of the pine wood nematode (PWN), which causes Pine Wilt Disease (PWD), have devastating effects on pine forests in regions with susceptible host trees under suitable climate conditions. Norwegian authorities have proposed a contingency plan if PWN is detected in Norway. We compare the costs of implementing this plan with the costs of further spread and damage of PWN under two climate change scenarios: present and the most likely future climate. With the present climate, PWD will not occur in Norway. Under climatic change, the cost of PWD damage is approximately 0.078–0.157 million NOK (0.01–0.02 million Euros) estimated as net present value with 2 and 4% p.a. discount rate. In contrast, the corresponding costs of implementing the suggested contingency plan will be 1.7–2.2 billion NOK (0.2–0.25 billion Euros). These costs are caused by reduced income from industrial timber production and the costs of the eradication measures. Costs related to reduced recreation or biodiversity are expected to be very high, but are not included in the above estimates. Many of the factors in the analysis are burdened with high uncertainty, but sensitivity analyses indicate that the results are rather robust even for drastic changes in assumptions. The results suggest that there is a need to revise the current PWN contingency plan in Norway.

Abstract

ClimaRice II is exploring the potential for use of mobile technologies in the context of climate change adaptation in agriculture. Modern mobile telephone technology is a key component of the ongoing communication revolution which in turn has great potentials for social change and development. The Indian telecommunication industry is the world's fastest growing industry with 811.59 million mobile phone subscribers as of March 2011. Most farmers are already using mobile phones for various day to day needs, but the technology has a wider potential in supporting their main profession; agriculture. Linking mobile technology with adaptation measures developed in ClimaRice projects could form new and powerful measures to meet the threats from climate change and provide support in sustaining rice production.

Abstract

P>Autumn growth of weeds (i) provides an opportunity for mechanical and chemical control in autumn and (ii) can be important for weed survival and infestation in the following spring. Growth characteristics of Elytrigia repens, Cirsium arvense and Sonchus arvensis in autumn were studied in 2004 and 2005, on plants of different origins and developmental stages (planted at various times from May to August). The plants were grown outdoors in large pots and were assessed during September and October each year. The study showed that (i) all species grew in autumn, but growth ceased and the species withered at different times; S. arvensis first, followed by C. arvense and then E. repens and (ii) less developed (i.e. younger) plants grew later in the autumn. This was demonstrated by leaf area development and biomass distribution during autumn. Older plants had a greater total biomass with relatively more rhizomes or creeping roots than younger plants. In young plants of C. arvense and S. arvensis, the biomass of creeping roots increased during autumn. The total biomass, however, changed little during autumn. These growth patterns indicate that E. repens will be the easiest, S. arvensis the most difficult and C. arvense in between, regarding control of these species in autumn.

Abstract

Phytophthora ramorum S. Werres, A.W.A.M. de Cook & W.A. Man in‘t Veld is a newly described Phytophthora-species which is considered to be relatively recently introduced to both USA and Europe from an unknown area, or areas, of origin. The pathogen has a wide host range and causes a complexity of disease symptoms generally grouped into three categories: canker, foliage lesion, and dieback. In Europe the pathogen has been reported in 21 countries, Norway included; predominantly on ornamental plants in nurseries, but also outside nurseries in gardens and semi-natural environment, most often on rhododendrons. The Norwegian Food Safety Authority needs a risk assessment of the pest as basis for an evaluation of a future phytosanitary risk management of P. ramorum, including whether the organism should be regulated as a quarantine pest in Norway. On this background the Norwegian Food Safety Authority, in a letter of 22nd August 2008, requested a pest risk assessment of P. ramorum from the Norwegian Scientific Committee for Food Safety (Vitenskapskomiteen for mattrygghet, VKM). The pest risk assessment was adopted by VKM"s Panel on plant health (Panel 9) on a meeting 24th June 2009. VKM"s Panel 9 gives the following main conclusions of the risk assessment: 1) P. ramorum is present but not widely distributed in Norway, and the pest is under official control. The outdoors surveys of P. ramorum in Norway have not been conducted systematically over the whole country, and some uncertainty therefore still remains regarding the current distribution of P. ramorum in the PRA area. 2) The overall probability of entry of P. ramorum into Norway and the overall probability of establishment of P. ramorum in Norway are both rated as high with low levels of uncertainty; 3) In the absence of statutory control the probability for P. ramorum to be spread quickly in the PRA area by trade of host plants for planting is rated as high. The uncertainty of this assessment is low; 4) The part of the PRA area where presence of P. ramorum might result in economically important losses (the endangered area) is assessed to be most of the country of Norway, except where the climate is predicted to be unfavourable for the pest. However, this area must be regarded as a maximum estimate for the endangered area. On the other hand, a narrow and very conservative estimate for the endangered area can be defined based on the geographical distribution of highly susceptible host plants in Norway. This area is gardens and parks with Rhododendron spp., Viburnum spp. and F. sylvatica and areas in the wild into which Rhododendron spp. has spread and woods with F. sylvatica. Woods with F. sylvatica is limited to the county of Vestfold and some small areas in the counties of Aust-Agder and Hordaland; 5) P. ramorum is likely to have moderate economic impact on the nurseries in the PRA area with current phytosanitary measures. Without any such regulations P. ramorum is likely to have major economic impact on the nursery industry of the PRA area. The levels of uncertainties of these assessments are low; 6) With current phytosanitary measures P. ramorum is likely to have moderate economic impact on parks and private gardens in parts of the PRA area. Without any such regulations P. ramorum is likely to have major economic impact in the best climatic zones of the PRA area. The levels of uncertainties of these assessments are low; 7) The impact of P. ramorum in coniferous and mixed forests of the PRA area is likely to be minor. The level of uncertainty of this assessment is medium. The impact of P. ramorum in natural and planted deciduous broadleaf forests of the PRA area is likely to be minor due to the scattered and limited distribution of the most susceptible species. The level of uncertainty of this assessment is medium; 8) The non-commercial and environmental consequences to natural environments in the PRA area are likely to be moderate. The level of uncertainty ...

Abstract

The main Avena species that are important weeds of cereal and arable crops include A. fatua L., A. sterilis and A. barbata Pott. All three species have an abscission scar on the grains. A risk assessment of A. fatua L. as an indirect pest in Norway is given in a separate document. For both A. sterilis ssp. macrocarpa and ssp. maxima, and for A. barbata Pott, the potential for entry and establishment in Norway is considered as very low. A. sterilis ssp. ludoviciana (winter wild oats) has a moderate potential for establishment in Norway. The suitability of the environment for A. sterilis ssp. ludoviciana was therefore investigated: Our assessment of the probability of establishment indicates that the climate is not favourable for establishment of A. sterilis ssp. ludoviciana in Norway. A. sterilis ssp. ludoviciana is a problem in southern Europe and central southern England and is mainly a weed in winter cereals. While it is highly likely that the probability of establishment of A. sterilis ssp. ludoviciana has increased in Norway in recent years due to climate change and consequent changes in cultural practices, its probability of establishment in Norway is still low and it is therefore not likely that it will become a weed in Norway under current conditions. However, if the future climate of the PRA area changes, so that winter conditions become similar to conditions in southern England, while the acreage of winter cereal continues to grow, A. sterilis ssp. ludoviciana could become a weed in Norway. A. sterilis ssp. ludoviciana is not present in Denmark where winter cereals are much more widely cultivated, and the climate is more favourable than in Norway. One would therefore expect the weed to establish in Denmark before it will become a problem in Norway

Abstract

In 2007, after many years of absence, Cucumber Green Mottle Mosaic Virus (CGMMV) reoccurred in Norwegian cucumber production. The Norwegian Food Safety Authority is considering to regulate CGMMV as a quarantine pest and commissioned a Pest Risk Analysis (PRA) of the virus. The Panel of Plant Health gives the following conclusions: Both recent and previous presence of CGMMV indicate that the pest is able to establish in the PRA area. The most probable pathway for long distance spread into the PRA area is seed transmission. Infected seedlings, people, water and soil are probable pathways for short distance spread. The probability of further spread is from location to location is high. Dry heat treatment has probably been the most effective measure to prevent the spread of CGMMV. There is a moderate level of uncertainty regarding the pathway for entry of CGMMV into the PRA area. There is a low degree of uncertainty regarding the pathogen survival and possibilty for transmission, establishment and spread in Norwegian greenhouse cucumber production.

Abstract

Pine Wood Nematode (PWN, Bursaphelenchus xylophilus) is the causal organism of Pine Wilt Disease (PWD), the worst forest pest of Japan. In Europe PWN is known to exist in Portugal. The Norwegian Food Safety Authority (Mattilsynet) is concerned about the plant health risks and the consequences to the society if PWN should establish in Norway. Mattilsynet needs a scientific assessment of the proposed measures in a contingency plan for PWN. Mattilsynet also needs the risks connected with recent spread of PWN in Portugal to be evaluated before possible changes can be made in the current phytosanitary policy of Norway. On this background Mattilsynet requested a pest risk assessment of PWN from the Norwegian Scientific Committee for Food Safety (Vitenskapskomiteen for mattrygghet, VKM). To answer the request, VKM commissioned a draft pest risk assessment report from the Norwegian Institute for Agricultural Sciences and Environmental Research (Bioforsk). A working group appointed by VKM’s Panel on Plant Health (Panel 9) has been involved during Bioforsk’s work on the report. VKM’s Panel 9 has used the report as a basis for VKM’s opinion. The current document answers Part 1 of Mattilsynet’s request, and was adopted by Panel 9 on a meeting 3rd September 2008. VKM’s Panel 9 gives the following main conclusions of the risk assessment: The PRA area of this assessment is Norway. PWN is not known to occur in Norway. With present trade pattern the probability of entry of PWN into Norway is expected to be high. The most probable pathway for entry of PWN into Norway would be wood packaging material (WPM). The probability that PWN will establish and spread in Norway is considered as high. With regard to the so-called Pest Free Areas (PFAs) of Portugal, the criteria given in ISPM No. 4 (FAO 1995) for establishing and maintaining PFAs have not been met, and the data available is not sufficient to confirm the existence of PFAs. Acceptance of untreated conifer wood from all parts of Portugal will result in a very high probability of entry and a high probability of establishment and spread of PWN and its vector to Norway. Uncertainty factors: To the best of our knowledge PWN is absent from the PRA area. The beetle M. sutor is regarded as a potential vector or PWN, but this has so far not been demonstrated in nature. The currently low vector densities may retard establishment of the PWN and PWD, but it will probably not stop establishment in a longer perspective. Lack of information on the dynamics of PWN populations in cool climates complicates estimates of the spread of the nematode and PWD. Custom routines may fail in their detection of PWN. Import of a seemingly harmless material might therefore pose an unknown risk. WPM follows consignments of all kinds and is a good example of a hazardous material, which often escapes plant health inspections. Detailed assessments of economic consequences of a possible establishment and spread of PWN in Norway, the effects of global warming and other climate changes on the probability for PWD outbreaks, and the effect of possible phytosanitary measures, will be given in Part 2.

Abstract

Wild oats (A. fatua) is present in 155 out of 431 Norwegian municipalities. It is widely distributed in all municipalities in the main agricultural areas in south-east and central-east Norway, and in the municipalities close to the Trondheim fjord. Otherwise wild oats is present in only a few scattered municipalities not geographically connected to these main areas. Endangered area, not yet infested by A. fatua, is estimated to 228858 ha. This area is spread over the cereal growing part of Norway. The counties of North- and South -Trøndelag have a higher portion of endangered area not yet infested than south and central part of East Norway. The probability of entry of A. fatua from outside the PRA area (Norway) is very low. The probability of spread within Norway is high. In areas with low infestation, like in Trøndelag, the probability of spread is lower than in heavily infested areas. However, in areas with high level of infestation there are few new farms left to be infested. The official wild oats register is a valuable tool in regulations aiming to limit spread. The register also provides a tool to follow up infested farms. The register would be even more useful if inspection for infestation on new farms had been more systematic. Wild oats is no longer devastating even in cereal monocropping, due to cost efficient herbicides. However, in Norway an increasing area is infested with wild oats. The infestation may vary from only a few plants to total coverage of the field. In cereal monocropping chemical treatment with and without hand roguing is the only feasible control methods. Hand roguing alone is expensive and ineffective even on modest infestation. The structural changes in cereal farming result in more farms being managed by entrepreneurs. Field managed by entrepreneurs promotes use of herbicide even on small infestations since this is a cost effective measure to control the weed. Less official control of cereal fields can also be expected. The economical consequences are thus expected to be high. The economical consequences can be even higher in organic farming if the most profitable rotation has to be changed to a less profitable one because of wild oats infestation.

Abstract

This report assesses the plant health risk for the bacterial plant disease fire blight for the Pest Risk Assessment area of Norway. In addition to providing an updated pest categorisation for fire blight in relation to Norway, the report provide new results on fruit tree blossom infection risk based on examination of historical climate and phenology data. The report conclude that if E. amylovora is introduced into the main fruit growing districts of Norway, it is expected that the damage and losses to commercial fruit production and nurseries will be minor, under the current phytosanitary regime in Norway. Relaxation of the regulations in force for fighting fire blight in Norway will increase the expected damage and losses to commercial fruit production and nurseries to a moderate level.

Abstract

The detection in 1999 of the pine wood nematode (PWN), Bursaphelenchus xylophilus, in Portugal triggered survey activities in many European countries. With the assumption that PWN would reach frequency 10 times lower than the native B. mucronatus and the requirement of a 95 % confidence limit suggested 2 995 samples to be required for a safe statement on the absence of PWN from the territory surveyed. Samples were taken from 10 circular areas with 50 km diameter erected from a point of import of risk materials. In the period 2000-2006 3 165 wood samples, 2 880 from Pinus sylvestris, 279 from Picea abies and 6 from unknown wood, were collected from 446 logging sites, in 84 municipalities and 13 counties. Of the total material 85 % of the samples came from cutting wastes, timber or lying trees. Wood showing signs of insect activity (incl. Monochamus) formed 73 % of the total material. Nematodes were recorded in 85 % of the samples. The order Rhabditida was most frequent, followed by the orders Aphelenchida, Tylenchida and Dorylaimida. Rhabditid nematodes were equally frequent in pine and spruce, while Aphelenchida (Aphelenchus, Aphelenchoides, Cryptaphelenchus, Seinura and Bursaphelenchus) and Tylenchida (Filenchus, Lelenchus, Ditylenchus, Deladenus and Nothotylenchus) tended to be more common in pinewood. Aphelenchoides was the most common genus. The genus Bursaphelenchus occurred in 1 % of the samples. B. mucronatus was detected in 0,3 % of the samples and most often in cutting waste of pine. The pine wood nematode (PWN), B. xylophilus, was not detected in this survey. The unexpected low natural occurrence of B. mucronatus indicates that the number of potential niches for PWN also is lower than expected, and hence it will be necessary to continue this surveillance program to reach 10 000 samples. The present zone sites in central and south-eastern Norway will be supplemented with 1-2 zone sites in southwestern region of the country. In the future these zone sites will function as permanent observation areas. Care will also be taken to collect all samples from detached wood with signs of Monochamus activity.

To document

Abstract

Cyclic outbreaks of forest moth pest species have long remained a puzzle for foresters and ecologists. This paper presents time-series exhibiting a strong negative relationship between sunspot numbers and population indices of autumnal and winter moths, both in a mountain birch forest in central Norway and in a mixed lowland forest in southern Norway. In the latter area, also the population level of a moth species feeding entirely on lichens was negatively related to sunspot numbers. Low sunspot activity leads to a thinner ozone layer and thus higher surface ultraviolet (UV)-B radiation. As winter moth larvae prefer leaves subjected to enhanced UV-B radiation, we suggest that the causal relationship between sunspots and moths is that the metabolic costs of producing UV-B-protective pigments during periods of low sunspot activity reduce trees" and lichens" resistance to herbivores, and thus increase the survival of moth larvae. Higher peak densities of moth cycles in mountain forests could be explained by the general higher UV-B radiation at higher altitudes.