Gro Hylen

Research Scientist

(+47) 476 84 638
gro.hylen@nibio.no

Place
Ås H8

Visiting address
Høgskoleveien 8, 1433 Ås

Abstract

Changes in forest management have been suggested as a government policy to mitigate climate change in Norway. Tree species change is one of the major strategies considered, with the aim to increase the annual uptake of CO2 as well as the long-term storage of carbon (C) in forests. The strategy includes replacing native, deciduous species with fast-growing species, mainly Norway spruce. Forests in western Norway host some of the largest soil C pools in Scandinavia, and may potentially function as a long-term C reservoir as well as a large source of atmospheric CO2 through decomposition. The project BalanC was initiated in 2016 in order to estimate the C storage potential related to tree species in a total of 15 parallel plots of birch and planted Norway spruce at 5 locations in western Norway. In addition to estimates of C stocks in biomass and soils, we investigate soil C processes, soil fungal and earthworm diversity, albedo, and wood product life-cycles. The current presentation focuses on C stocks in soils relative to trees, soil respiration, and soil climate data. Preliminary results indicate that the soil respiration in spruce was 85 % of the respiration in birch, with a span ranging from 55-151%. The preliminary soil temperature and soil moisture data of the spruce stands were 97 and 73%, respectively, of the birch stands, indicating cooler and drier conditions under spruce which may affect decomposition and C accumulation rates. We expect C allocation in the soil to be affected by tree species, with larger C stocks in the forest floor of spruce stands compared to the mineral soil. Consistent differences in the bulk density of soils under each tree species are likely to be observed, pointing out the need to compare soil C stocks based on equal soil mass. The magnitude of the combined C stock in biomass and soil may increase with planting of spruce, however, we also expect an impact on C stability that will affect the overall mitigation effect of this measure.

Abstract

Natural regeneration of Norway spruce (Picea abies (L.) Karst.) is a relatively common practice in Norway on medium to low site indices. However, seedling establishment is often hampered by rapid regrowth of competing vegetation in scarified patches. The aim of our study was to examine the effect of coordinating scarification towards an expected seed-fall, by studying germination and seedling establishment in scarified patches of different age (fresh, one- and two-year-old). The experiment was conducted in two stands in southeast Norway that were clear-cut in 2007. Scarification was applied to subplots in autumn 2008–2010. To simulate seed-fall, seeds were sown in fresh scarification patches in spring 2009–2011, in one-year-old patches in 2010 and 2011, and in twoyear- old patches in 2011. Both germination and seedling survival were negatively affected by the age of the scarified patches. Germination was higher, and mortality lower, at the small fern woodland site, compared with the bilberry woodland site. Sowing in fresh patches also resulted in increased height and root collar diameter of the seedlings compared with sowing in older patches. It is likely that the competing vegetation both on the site and in the scarification patches affected the growth of the seedlings. In conclusion, the age of the scarified patches affected both germination and mortality, as well as early growth of the seedlings.

Abstract

Every year the Norwegian Forest and Landscape Institute submits the national GHG inventory for the land use, land-use change and forestry sector as part of the National Inventory Report (NIR). The methodology and activity data used to estimate CO2 emissions and removals from cropland and grassland were thoroughly evaluated in 2012 and several new methods were implemented in the 2013 NIR submission. The objective of this report is to present the results of this evaluation and to provide detailed documentation of the new methodologies and the emissions reported in the 2013 NIR submission to UNFCCC for cropland and grassland (CPA, 2013). This report describes four major topics: 1) Method choice for mineral soils. The erosion-based method previously used for mineral soils on both cropland and grassland cannot be considered appropriate. It was replaced by a Tier 2 method for cropland remaining cropland (considering effects of crop rotation, tillage, crop residues and manure inputs) and a Tier 1 method for grassland remaining grassland (considering effects of grassland management practice). 2) Evaluation of the emission factor used for organic soil and the area estimate. A review of Scandinavian literature did not support changing the emission factor value but the areas of cultivated organic soils were re-defined under cropland and grassland. 3) A Tier 1 methodology that can be used to estimate soil carbon stock changes on land-use conversion to grassland and cropland as well as all other land-use change conversion. 4) Uncertainty estimation for all source/sink categories are presented including the use of IPCC default uncertainty estimates when relevant.

To document

Abstract

Most European countries have signed the United Nations Framework Convention on climate change and its Kyoto Protocol. Because the European Union is a party to the convention just like the individual countries, there is a need for harmonizing emissions reporting. This specifically applies to the Land Use, Land-Use Change, and Forestry sector, for which harmonized reporting is complex and generally challenging. For example, parties use a variety of different methods for estimating emissions and removals, ranging from application of default factors to advanced methods adapted to national circumstances, such as ongoing field inventories. In this study, we demonstrate that without harmonization, national definitions and methods lead to inconsistent estimates. Based on case studies in Finland, Germany, Norway, Portugal, Slovenia, and Sweden, we conclude that common reference definitions and country-specific bridges are means to harmonize the estimates and make greenhouse gas reporting from forests comparable across countries.

To document

Abstract

National forest inventories (NFIs) are an important source of data for reporting greenhouse gas emissions and removals for the Land Use, Land-Use Change, and Forestry sector as required by the United Nations Framework Convention on Climate Change and its Kyoto Protocol. A major limitation is that NFI resources are generally not sufficient for producing reliable information on year-to-year variation. Interpolation, extrapolation, smoothing, and/or aggregation of data from several years are therefore needed to comply with the reporting requirements for a specific year. Various methods for accomplishing this task are illustrated and evaluated based on data and experiences from the NFIs of six countries, concentrating on the estimation of the stem volume of living trees as a surrogate for tree biomass. Six main conclusions were drawn: (1) NFI data from the target years only were not sufficient for reliable estimation of annual stock change; (2) changes between whole inventory cycles (typically 5 years) could be estimated with reasonable precision; (3) simple moving average estimators of stock are problematic in the estimation of changes; (4) interpenetrating panel designs with permanent sample plots are desirable from the point of view of inter/extrapolating and change estimation; (5) data on annual growth variation and harvests are important and can be used directly in the default method, which is based on differences between increment and drain; and (6) time gaps between NFI surveys may lead to significant errors in the estimation of stock changes.

Abstract

Evaluation of climate change consequences and national carbon reporting such as under the Kyoto protocol require long-term monitoring of carbon fluxes. We report on an ongoing project aimed at a national-level assessment of the terrestrial carbon sequestration potential under present conditions and under various climate and land use change scenarios, in particular in terms of their temperature effect. We develop empirical models for national soil carbon stock assessment and evaluate process-based soil carbon models for prediction of future carbon dynamics.....

Abstract

The Norwegian Monitoring Programme for Forest Damage (OPS) has since its start registered damage to selected trees. The aim of the registrations has been to explain variations in crown density and crown colour. In answer to international requests, the Norwegian Forest and Landscape Institute has prepared a short guide to the determination of the most common forms of damage found in Norwegian forests...

Abstract

Growing stocks of trees in Europe have increased in a magnitude that is significant in terms of carbon (C) sink strength. Estimates of the soil C sink strength that this increased stock of trees may have induced on a regional scale are scarce, uncertain and difficult to compare. This illustrates the need for a widely applicable calculation method. Here, we calculate a C budget of productive forest in southeast Norway based on forest inventory information, biomass expansion factors (BEF), biomass turnover rates and the dynamic soil model Yasso. We estimate a 29% increase (112-145 Tg) of C in biomass between 1971 and 2000, and estimate the associated increase of C in soils (including dead wood) to be 4.5% (181-189 Tg). The C sink strengths in biomass and soils (including dead wood) in 1990 are 0.38 and 0.08 Mg ha(-1) yr(-1), respectively. Estimated soil C density is 58 Mg C ha(-1) or ca 40% of measured soil C density in Norwegian forest soils. A sensitivity analysis - using uncertainty estimates of model inputs and parameters based on empirical data - shows that the underestimation of the soil C stock can be due to overestimation of decomposition rates of recalcitrant organic matter in the soil model and to including only trees as a source of litter. However, uncertainty in these two factors is shown to have a minimal effect on soil sink estimates. The key uncertainty in the soil sink is the initial value of the soil C stock, i.e. the assumed steady state soil C stock at the start of the time series in 1970. However, this source of uncertainty is reduced in importance for when approaching the end of the data series. This indicates that a longer time series of forest inventory data will decrease the uncertainty in the soil sink estimate due to initialisation of the soil C stock. Other, less significant, sources of uncertainty in estimates of soil stock and sink are BEF for fine roots and turnover rates of fine roots and foliage. The used method for calculation of a forest C budget can be readily applied to other regions for which similar forest resource data are available.

Abstract

Age trends of phenotypic, environmental, and additive genetic variance and heritability were estimated for overall density and its components earlywood and latewood densities and latewood proportion. The objective was to acquire information for both individual and cumulated rings from ring number 3 to 12 counted from the pith. Age-age correlations were calculated for cumulated density traits only. The wood density data were obtained with X-ray analysis of increment cores from 47 open-pollinated families of Norway spruce (Picea abies (L.) Karst.). The families had earlywood and latewood with significant differences in density for individual and cumulated rings and consequently for overall density. The latewood proportion had significant family variation for cumulated rings but not for all individual rings. Large fluctuations in environmental variance caused fluctuations in heritability estimates for successive rings. A strong decrease in environmental variance for all cumulated traits, especially from ring 3 to 5, resulted in a steady increase in heritability estimates. The latewood density had the highest heritability estimates and latewood proportion the lowest for both individual and cumulated rings. Overall density and the cumulated components at cambial age 12 showed strong genetic correlations with their respective traits at all younger ages.