Even Bergseng

Head of Department/Head of Research

(+47) 976 66 173
even.bergseng@nibio.no

Place
Ås H8

Visiting address
Høgskoleveien 8, 1433 Ås

Abstract

Natural and rural land provides resources for the majority of ecosystem services we need. Typical provisioning services from these resources are timber logging, collection of berries, mushrooms and hunting. Typical regulating services are carbon storage, regulation of flooding and temperature, and typical cultural services are education, science and nature based tourism. The use of one ecosystem service always affects the other services. How can we evaluate how the various use of services affect each other? In our research group, we work innovatively with multi-criteria analyses to find ways of trading-off contradicting interests in ecosystem services. The red tread is to consider «all» sides of multiuse and thereby reduce conflicts between stakeholders. To achieve this, it is necessary to combine conventional valuation methods (market-oriented recourse-economy) and new socioecological approaches.

Abstract

Finding new ways to simultaneously account for monetary and non-monetary goals in ecosystem services is needed in order to establish a new modelling framework for the facilitation of trade-offs between competing stakeholder interests. The socioecological sustainability of an ecosystem service is dependent on the consent of the people in the area of the ESS. An important reason is that a given ecosystem service may have highly different value in different stakeholder cultures. In this aspect is also the understanding of disservices and hidden services. The kind and level of conflict tend to differ with location and the operational level of decision-making. It is crucial work to identify all linked subservices and organise them into a common framework for evaluation. In our research group (MULTIESS) we try to develop multi-criteria tools to assess the implications of prioritizing different interests on ecological, sociological and economic output. Similarly, changes in the human population and environment will interact and influence on the services and their values, demanding such parameters to be evaluated for the whole range of potential scenarios. We maintain that in order to make multi-criteria analyses (MCA) successful, service outputs and externalities must and can be measured in familiar terms (e.g. money, biomass) without the use of direct or stated pricing of non-commodities such as welfare, recreation or biodiversity.

To document

Abstract

Use of harvest residues for bioenergy is minimal in Norway, and the proposed increase of 14 TWh in annual bioenergy use by year 2020 may thus to a large part be based on residues from conventional timber harvesting. To judge the potential of harvest residues for bioenergy both in the short and long run, we present cost-supply curves for residue harvesting at national and regional levels. We produce different harvesting scenarios using the detailed forest model Gaya/J and a representative description of the Norwegian forest area from Norwegian national forest inventory (NFI) sample plots including environmental restrictions. Forest information is sufficiently detailed to estimate necessary biomass fractions and calculate costs of harvest residue extraction at plot level. We estimate a maximum annual energy production of 5.3 TWh from harvest residues with the present harvest level, which is far from the official target. In principle, there are two solutions for achieving this target; increase harvests and thus the corresponding residue supply, or increase the use of roundwood for energy purposes on the expense of pulpwood. Scenarios with long-run increase in timber production shows an annual energy potential from harvest residues in the range 6–9 TWh. Thus, to reach the political target roundwood must be used for energy production.

Abstract

Introductions of the pine wood nematode (PWN), which causes Pine Wilt Disease (PWD), have devastating effects on pine forests in regions with susceptible host trees under suitable climate conditions. Norwegian authorities have proposed a contingency plan if PWN is detected in Norway. We compare the costs of implementing this plan with the costs of further spread and damage of PWN under two climate change scenarios: present and the most likely future climate. With the present climate, PWD will not occur in Norway. Under climatic change, the cost of PWD damage is approximately 0.078–0.157 million NOK (0.01–0.02 million Euros) estimated as net present value with 2 and 4% p.a. discount rate. In contrast, the corresponding costs of implementing the suggested contingency plan will be 1.7–2.2 billion NOK (0.2–0.25 billion Euros). These costs are caused by reduced income from industrial timber production and the costs of the eradication measures. Costs related to reduced recreation or biodiversity are expected to be very high, but are not included in the above estimates. Many of the factors in the analysis are burdened with high uncertainty, but sensitivity analyses indicate that the results are rather robust even for drastic changes in assumptions. The results suggest that there is a need to revise the current PWN contingency plan in Norway.