To document

Abstract

Pine wood nematode (PWN), Bursaphelenchus xylophilus, is a threat for pine species (Pinus spp.) throughout the world. The nematode is native to North America, and invaded Japan, China, Korea, and Taiwan, and more recently Portugal and Spain. PWN enters new areas through trade in wood products. Once established, eradication is not practically feasible. Therefore, preventing entry of PWN into new areas is crucial. Entry risk analysis can assist in targeting management to reduce the probability of entry. Assessing the entry of PWN is challenging due to the complexity of the wood trade and the wood processing chain. In this paper, we develop a pathway model that describes the wood trade and wood processing chain to determine the structure of the entry process. We consider entry of PWN through imported coniferous wood from China, a possible origin of Portuguese populations, to Europe. We show that exposure increased over years due to an increase in imports of sawn wood. From 2000 to 2012, Europe received an estimated 84 PWN propagules from China, 88% of which arose from imported sawn wood and 12% from round wood. The region in Portugal where the PWN was first reported is among those with the highest PWN transfer per unit of imported wood due to a high host cover and vector activity. An estimated 62% of PWN is expected to enter in countries where PWN is not expected to cause the wilt of pine trees because of low summer temperatures (e.g., Belgium, Sweden, Norway). In these countries, PWN is not easily detected, and such countries can thus serve as potential reservoirs of PWN. The model identifies ports and regions with high exposure, which helps targeting monitoring and surveillance, even in areas where wilt disease is not expected to occur. In addition, we show that exposure is most efficiently reduced by additional treatments in the country of origin, and/or import wood from PWN-free zones. Pathway modelling assists plant health managers in analyzing risks along the pathway and planning measures for enhancing biosecurity.

Abstract

Nematodes as limiting factors in potato production in Norway Plant parasitic nematodes associated with potato feeds on roots and/or tubers. At least 68 species, representing 24 genera of have been found associated with potato. Since nematodes generally attack underground plant parts, there are no reliable foliar symptoms to show that nematodes may be the major cause of poor growth and reduced tuber yields. Potato roots damaged by nematodes may show the presence of lesions, females/cysts or galls. After a few weeks, however, roots may be attacked by other pathogens such as bacteria and fungi, and the original damage by nematodes may not be obvious. Therefore, nematode damage often may have been attributed to other factors. There are no estimations for potatoes yield losses in Scandinavia due to nematodes, however, in the United Kingdom, it is estimated that 9 % of the potato crop is lost annually because of the potato cyst nematodes (PCN), Globodera rostochiensis and G. pallida, and it is reasonable to assume that this percentage is also applicable to Scandinavia. However, if we consider the possible additional effects of other nematode species occurring in Norway, yield reductions could be as high as 20%. Besides direct yield losses, some nematodes affect tuber quality. Yield losses depend on the pathogenicity of the species of nematode, the nematode population density at planting, the susceptibility and tolerance of the host and by a range of environmental factors. In Norway, potato cyst nematodes (G. rostochiensis and G. pallida) are by far the most important nematodes in potato. Other important nematodes include root-lesion nematodes (Pratylenchus spp.), stubby root nematodes (Trichodorus spp. and Paratrichodorus spp.) and stem and tuber nematodes (Ditylenchus spp.). Nematodes considered less important include root knot nematode (Meloidogyne hapla) and needle nematodes (Longidorus spp.). In Norway, potato cyst nematodes (Globodera rostochiensis and G. pallida) are quarantine pests subjected to regulations. PCN infestations result in costly production systems and loss in sales value of farms. Their occurrences restrict acreage available for potato production as in some cases legislative regulations forbid potato production or make the production more difficult and more expensive. Furthermore societal consequences by far exceed yield losses. It is also compulsory to sample the soil for seed potato production to document freedom from PCN. When PCN is present in the field complete eradication is not possible. Effective management requires reliable information on virulence, decline rates of population densities and infectivity in soil. It is also crucial to know what conditions or practices increase these decline rates. Today in Norway, non-virulent G. rostochiensis is managed by crop rotation, while infestations by G. pallida or virulent G. rostochiensis pathotypes capable of breaking the resistance in potato cultivars in current use results in a 40-years prohibition for growing potato in the infected field. Root-lesion nematodes (Pratylenchus spp.) cause damage to the roots and induce scabby to sunken lesions on tubers. Stubby root nematodes (Trichodorus spp. and Paratrichodorus are nematode vectors of Tobacco Rattle Virus they causes the symptom called “Spraing” in tubers. Occasionally stem and tuber nematodes (Ditylenchus spp.), have been reported as problems both in field and storage, especially when weeds are not well controlled. Management strategies aim to prevent nematode multiplication and hence protect the potato crop from damage. An efficient method of controlling nematodes as Ditylenchus spp. and root-lesion nematodes is black fallow, but this may be difficult to achieve in many cases.

To document

Abstract

No abstract has been registered

Abstract

Introductions of the pine wood nematode (PWN), which causes Pine Wilt Disease (PWD), have devastating effects on pine forests in regions with susceptible host trees under suitable climate conditions. Norwegian authorities have proposed a contingency plan if PWN is detected in Norway. We compare the costs of implementing this plan with the costs of further spread and damage of PWN under two climate change scenarios: present and the most likely future climate. With the present climate, PWD will not occur in Norway. Under climatic change, the cost of PWD damage is approximately 0.078–0.157 million NOK (0.01–0.02 million Euros) estimated as net present value with 2 and 4% p.a. discount rate. In contrast, the corresponding costs of implementing the suggested contingency plan will be 1.7–2.2 billion NOK (0.2–0.25 billion Euros). These costs are caused by reduced income from industrial timber production and the costs of the eradication measures. Costs related to reduced recreation or biodiversity are expected to be very high, but are not included in the above estimates. Many of the factors in the analysis are burdened with high uncertainty, but sensitivity analyses indicate that the results are rather robust even for drastic changes in assumptions. The results suggest that there is a need to revise the current PWN contingency plan in Norway.

Abstract

Plant parasitic nematodes associated with potato feed on roots and/or tubers. About 70 species, representing 24 genera, have been reported from potato. Since nematodes attack underground plant parts, there are no reliable foliar symptoms to show that nematodes may be the major cause of poor growth and reduced tuber yields. Potato roots damaged by nematodes may show lesions, abnormal proliferation of lateral roots, emerging white females and brown cysts. Nematode attacks may render plants vulnerable to other pathogens, so disease caused by microorganisms may have nematodes as an etiological component. Therefore, nematode damage may often have been attributed to other factors. In Scandinavia, potato cyst nematodes (Globodera rostochiensis and Globodera pallida) are by far the most important nematodes on potato. In Norway, the cost of compensations schemes due to imposed statutory regulations of potato cyst nematodes may some years exceed the compensation for any other pests or diseases organism in agriculture. Other important nematodes include root lesion nematodes (Pratylenchus spp.), stubby root nematodes (Trichodorus spp. and Paratrichodorus spp.), and potato rot and stem nematodes (Ditylenchus spp.). Root knot nematode Meloidogyne hapla is considered less important. Meloidogyne chitwoodi and Meloidogyne fallax are not known to be present in Nordic countries. In the control, crop rotations using non-host crops, alternating susceptible and resistant potato cultivars, are an important control measure. However, the use of resistant potato cultivars requires knowledge of the species and pathotypes present in the field.

Abstract

Nematodes, commonly known as round worms, are the most common multicellular animals on planet Earth. After 1000 million years of evolution members of the phylum Nematoda have a high bionomic diversity. As habitants of the soil and rhizosphere nematodes are involved en energy fluxes, and affect carbon and nutrient cycles. As plant parasites, either alone or in synergism with other pathogens, nematodes are responsible for plant disease complexes and major crop losses. A growth depression in a field of potato (Solanum tuberosum) cv. Saturna [resistant to pathotype Ro1 of potato cyst nematode (PCN) Globodera rostochiensis], suggestive of potato cyst nematode damage, was detected in Grue, eastern Norway. Analyses of soil samples did not detect PCN, but demonstrated the occurrence of a large number of lesion nematodes Pratylenchus penetrans .Tubers from the depressed part of the field had severe symptoms similar to those caused by the common scab bacterium Streptomyces scabies. Potato yield was reduced by 50% in the affected area of the field. Transect-sampling showed plant growth to be negatively correlated with densities of P. penetrans and suggested a damage threshold of potato to the nematode of 100 specimens per250 g of soil. Common scab (Streptomyces scabies) occurred frequently in the affected area. P. penetrans was present in roots, underground stems, stolons and tubers. Tubers from the depressed part of the field had severe symptoms similar to those caused by the common scab bacterium. In tubers, nematodes were detected inside cross-lesions typical symptoms of common scab, and occurred also in the outermost 0.5 mm tissue associated with such lesions. In pots with sterile sand, micro-tubers of potato cv. Saturna, produced from meristems, were grown in a green-house infected with, P. penetrans, S. scabies, and a combination of P. penetrans and, S. scabies. P. penetrans alone induced tuber lesions similar to those of common scab. Also, the combined inoculation of the bacterium and the nematode seemed to enhance symptom expression. Similar scab symptoms, in connection with lesion nematode infections, have been observed on potato tubers cv. Oleva, which also is relatively tolerant to common scab. Symptomatic tubers cv. Saturna first stored at 4o C for 20 weeks were transferred to pots with sterile sand and grown for 3 months in the green-house. In these cultures P. penetrans was first detected in soil 8 weeks after planting. Examination at harvest of soil, roots, stolons, tubers demonstrated symptoms typical of P. penetrans. Interestingly, P. penetrans survives storage of potatoes, from which new infections may develop. Hence, potato tubers do appear to be an important means for the spread of P. penetrans to new areas. The fact that the symptoms induced by this nematode may be mistaken for symptoms of common scab suggests that the frequency of S. scabies might have been overestimated in regular surveys. Infections by P. penetrans have important implications for scab control. This pertains in particular to recommended maintenance of high soil moisture at and during 4-9 weeks after tuber set. If symptoms are related to nematode infection rather than to the scab bacterium, this recommendation would allow for a rapid build-up of lesion nematodes resulting in a decrease in both yield and marketability of the tubers. Further studies are needed to investigate the extent of this problem.

To document

Abstract

The pinewood nematode (PWN) is one of the worst tree-killing exotic pests in East-Asian countries. The first European record of establishment in Portugal in 1999 triggered extensive surveys and contingency plans for eradication in European countries, including immediate removal of large areas of conifer host trees. Using Norway as an example, we applied a simulation model to evaluate the chance of successful eradication of a hypothetical introduction by the current contingency plan in a northern area where wilting symptoms are not expected to occur. Despite a highly variable spread of nematode infestations in space and time, the probability of successful eradication in 20 years was consistently low (mean 0.035, SE 0.02). The low success did not change significantly by varying the biological parameters in sensitivity analyses (SA), probably due to the late detection of infestations by the survey (mean 14.3 years). SA revealed a strong influence of management parameters. However, a high probability of eradication required unrealistic measures: achieving an eradication probability of 0.99 in 20 years required 10,000 survey samples per year and a host tree removal radius of 8,000 m around each detection point.

Abstract

In 1955 the potato cyst nematode (PCN) was recorded for the first time in Norway. This detection resulted in extensive surveys and measures were implemented based on the statutory regulation of 1916. The first statutory regulation for PCN was put in power in 1956, and later amended in several occasions. These regulations prohibit the introduction and spread of PCN with soil and plant materials. Early control strategies included the use of chemical fumigants and resistant potato cultivars in infested fields, and surveys detected new infestations which were placed under quarantine regulations. The recognition of G. rostochiensis and G. pallida, their pathotypes enabled a more precise use of resistant cultivars. Commercial chemical fumigants, organophosphates or carbamate nematicides have not been used in Norway since the early 1970s. Today, non-virulent G. rostochiensis is managed by crop rotation, while infestations by G. pallida or virulent G. rostochiensis results in at least 40-years ban for growing potato. Most Norwegian potato cultivars have the resistance genes, Gro-1 (H1) from Solanum tuberosum ssp. andigena. During the preceding decades great emphasis has been placed on documenting freedom from PCN in the production of certified seed potatoes, certified seed potato are used in combination with crop rotations using non-host crops, alternating susceptible and resistant cultivars. These are important control measures, but not easy to implement in Norway due to restricted acreage suitable for long rotations. The safe use of resistant potato cultivars requires a better knowledge on the presence of species and pathotypes in potato fields. In order to improve our information of the occurrence of PCN a new national survey program for the principal potato districts has started. These surveys will complemented by information generated from a new research project dealing with: studies of the virulence of selected PCN populations, decline rates of nematode field population densities and infection potential over time of populations from fields placed under quarantine regulations. studies on the occurrence and pathogenicity of microbial antagonistic parasitic on PCN, and their potential of future management of PCN, the safe use of early potato cultivars as a practical control method, and the potential for using Solanum sisymbriifolium as a trap crop, distinguish the degree of resistance of selected potato varieties available on the Norwegian market, and initial studies of the PCN-Potato-Pathosystem. These expected results of this project possibly will improve the management of PCN, and may alleviate present regulatory restrictions.

Abstract

In Nordic countries organic farming started as bio-dynamic farms in the 1930s, and still in the 1970s only a small number of farms were organic. Since then the acreage of organic farming has increased and in 2007 Sweden had 222 268 ha (7.9%), Finland 147 557 ha (6.4 %), Denmark 147 482 ha (5.4%), Norway 43 033 ha (4.7%) and Iceland 4 684 ha (0.27%). In northern areas the short vegetation period combined with low temperatures reducing mineralisation causing nutritional deficit may restrict yields. As mineral fertilizers are prohibited in organic farming, plant nutrition and yield depend on proper microbial activity for nutrient cycling. Plant parasitic nematodes (PPN) reduce plant growth, while microbivorous nematodes (MBN) increase nutrient accessibility. Nitrogen fixating legumes, used to improve soil nitrogen levels, may increase densities of PPN to levels causing crop damage. Management of PPN in organic farming relies on knowledge of population dynamics, damaging thresholds and cultural methods like weed control, sanitation, mulching, crop rotation and resistant cultivars. Keeping PPN below damaging levels and supporting beneficial MBN to improve mineralisation would increase yields and improve quality of organics crops in northern areas. Management of MBN is less well understood, but may be of crucial importance for organic farming in northern areas.

Abstract

Phytophthora ramorum S. Werres, A.W.A.M. de Cook & W.A. Man in‘t Veld is a newly described Phytophthora-species which is considered to be relatively recently introduced to both USA and Europe from an unknown area, or areas, of origin. The pathogen has a wide host range and causes a complexity of disease symptoms generally grouped into three categories: canker, foliage lesion, and dieback. In Europe the pathogen has been reported in 21 countries, Norway included; predominantly on ornamental plants in nurseries, but also outside nurseries in gardens and semi-natural environment, most often on rhododendrons. The Norwegian Food Safety Authority needs a risk assessment of the pest as basis for an evaluation of a future phytosanitary risk management of P. ramorum, including whether the organism should be regulated as a quarantine pest in Norway. On this background the Norwegian Food Safety Authority, in a letter of 22nd August 2008, requested a pest risk assessment of P. ramorum from the Norwegian Scientific Committee for Food Safety (Vitenskapskomiteen for mattrygghet, VKM). The pest risk assessment was adopted by VKM"s Panel on plant health (Panel 9) on a meeting 24th June 2009. VKM"s Panel 9 gives the following main conclusions of the risk assessment: 1) P. ramorum is present but not widely distributed in Norway, and the pest is under official control. The outdoors surveys of P. ramorum in Norway have not been conducted systematically over the whole country, and some uncertainty therefore still remains regarding the current distribution of P. ramorum in the PRA area. 2) The overall probability of entry of P. ramorum into Norway and the overall probability of establishment of P. ramorum in Norway are both rated as high with low levels of uncertainty; 3) In the absence of statutory control the probability for P. ramorum to be spread quickly in the PRA area by trade of host plants for planting is rated as high. The uncertainty of this assessment is low; 4) The part of the PRA area where presence of P. ramorum might result in economically important losses (the endangered area) is assessed to be most of the country of Norway, except where the climate is predicted to be unfavourable for the pest. However, this area must be regarded as a maximum estimate for the endangered area. On the other hand, a narrow and very conservative estimate for the endangered area can be defined based on the geographical distribution of highly susceptible host plants in Norway. This area is gardens and parks with Rhododendron spp., Viburnum spp. and F. sylvatica and areas in the wild into which Rhododendron spp. has spread and woods with F. sylvatica. Woods with F. sylvatica is limited to the county of Vestfold and some small areas in the counties of Aust-Agder and Hordaland; 5) P. ramorum is likely to have moderate economic impact on the nurseries in the PRA area with current phytosanitary measures. Without any such regulations P. ramorum is likely to have major economic impact on the nursery industry of the PRA area. The levels of uncertainties of these assessments are low; 6) With current phytosanitary measures P. ramorum is likely to have moderate economic impact on parks and private gardens in parts of the PRA area. Without any such regulations P. ramorum is likely to have major economic impact in the best climatic zones of the PRA area. The levels of uncertainties of these assessments are low; 7) The impact of P. ramorum in coniferous and mixed forests of the PRA area is likely to be minor. The level of uncertainty of this assessment is medium. The impact of P. ramorum in natural and planted deciduous broadleaf forests of the PRA area is likely to be minor due to the scattered and limited distribution of the most susceptible species. The level of uncertainty of this assessment is medium; 8) The non-commercial and environmental consequences to natural environments in the PRA area are likely to be moderate. The level of uncertainty ...

Abstract

The main Avena species that are important weeds of cereal and arable crops include A. fatua L., A. sterilis and A. barbata Pott. All three species have an abscission scar on the grains. A risk assessment of A. fatua L. as an indirect pest in Norway is given in a separate document. For both A. sterilis ssp. macrocarpa and ssp. maxima, and for A. barbata Pott, the potential for entry and establishment in Norway is considered as very low. A. sterilis ssp. ludoviciana (winter wild oats) has a moderate potential for establishment in Norway. The suitability of the environment for A. sterilis ssp. ludoviciana was therefore investigated: Our assessment of the probability of establishment indicates that the climate is not favourable for establishment of A. sterilis ssp. ludoviciana in Norway. A. sterilis ssp. ludoviciana is a problem in southern Europe and central southern England and is mainly a weed in winter cereals. While it is highly likely that the probability of establishment of A. sterilis ssp. ludoviciana has increased in Norway in recent years due to climate change and consequent changes in cultural practices, its probability of establishment in Norway is still low and it is therefore not likely that it will become a weed in Norway under current conditions. However, if the future climate of the PRA area changes, so that winter conditions become similar to conditions in southern England, while the acreage of winter cereal continues to grow, A. sterilis ssp. ludoviciana could become a weed in Norway. A. sterilis ssp. ludoviciana is not present in Denmark where winter cereals are much more widely cultivated, and the climate is more favourable than in Norway. One would therefore expect the weed to establish in Denmark before it will become a problem in Norway

Abstract

In 2007, after many years of absence, Cucumber Green Mottle Mosaic Virus (CGMMV) reoccurred in Norwegian cucumber production. The Norwegian Food Safety Authority is considering to regulate CGMMV as a quarantine pest and commissioned a Pest Risk Analysis (PRA) of the virus. The Panel of Plant Health gives the following conclusions: Both recent and previous presence of CGMMV indicate that the pest is able to establish in the PRA area. The most probable pathway for long distance spread into the PRA area is seed transmission. Infected seedlings, people, water and soil are probable pathways for short distance spread. The probability of further spread is from location to location is high. Dry heat treatment has probably been the most effective measure to prevent the spread of CGMMV. There is a moderate level of uncertainty regarding the pathway for entry of CGMMV into the PRA area. There is a low degree of uncertainty regarding the pathogen survival and possibilty for transmission, establishment and spread in Norwegian greenhouse cucumber production.

Abstract

Pine Wood Nematode (PWN, Bursaphelenchus xylophilus) is the causal organism of Pine Wilt Disease (PWD), the worst forest pest of Japan. In Europe PWN is known to exist in Portugal. The Norwegian Food Safety Authority (Mattilsynet) is concerned about the plant health risks and the consequences to the society if PWN should establish in Norway. Mattilsynet needs a scientific assessment of the proposed measures in a contingency plan for PWN. Mattilsynet also needs the risks connected with recent spread of PWN in Portugal to be evaluated before possible changes can be made in the current phytosanitary policy of Norway. On this background Mattilsynet requested a pest risk assessment of PWN from the Norwegian Scientific Committee for Food Safety (Vitenskapskomiteen for mattrygghet, VKM). To answer the request, VKM commissioned a draft pest risk assessment report from the Norwegian Institute for Agricultural Sciences and Environmental Research (Bioforsk). A working group appointed by VKM’s Panel on Plant Health (Panel 9) has been involved during Bioforsk’s work on the report. VKM’s Panel 9 has used the report as a basis for VKM’s opinion. The current document answers Part 1 of Mattilsynet’s request, and was adopted by Panel 9 on a meeting 3rd September 2008. VKM’s Panel 9 gives the following main conclusions of the risk assessment: The PRA area of this assessment is Norway. PWN is not known to occur in Norway. With present trade pattern the probability of entry of PWN into Norway is expected to be high. The most probable pathway for entry of PWN into Norway would be wood packaging material (WPM). The probability that PWN will establish and spread in Norway is considered as high. With regard to the so-called Pest Free Areas (PFAs) of Portugal, the criteria given in ISPM No. 4 (FAO 1995) for establishing and maintaining PFAs have not been met, and the data available is not sufficient to confirm the existence of PFAs. Acceptance of untreated conifer wood from all parts of Portugal will result in a very high probability of entry and a high probability of establishment and spread of PWN and its vector to Norway. Uncertainty factors: To the best of our knowledge PWN is absent from the PRA area. The beetle M. sutor is regarded as a potential vector or PWN, but this has so far not been demonstrated in nature. The currently low vector densities may retard establishment of the PWN and PWD, but it will probably not stop establishment in a longer perspective. Lack of information on the dynamics of PWN populations in cool climates complicates estimates of the spread of the nematode and PWD. Custom routines may fail in their detection of PWN. Import of a seemingly harmless material might therefore pose an unknown risk. WPM follows consignments of all kinds and is a good example of a hazardous material, which often escapes plant health inspections. Detailed assessments of economic consequences of a possible establishment and spread of PWN in Norway, the effects of global warming and other climate changes on the probability for PWD outbreaks, and the effect of possible phytosanitary measures, will be given in Part 2.

Abstract

Wild oats (A. fatua) is present in 155 out of 431 Norwegian municipalities. It is widely distributed in all municipalities in the main agricultural areas in south-east and central-east Norway, and in the municipalities close to the Trondheim fjord. Otherwise wild oats is present in only a few scattered municipalities not geographically connected to these main areas. Endangered area, not yet infested by A. fatua, is estimated to 228858 ha. This area is spread over the cereal growing part of Norway. The counties of North- and South -Trøndelag have a higher portion of endangered area not yet infested than south and central part of East Norway. The probability of entry of A. fatua from outside the PRA area (Norway) is very low. The probability of spread within Norway is high. In areas with low infestation, like in Trøndelag, the probability of spread is lower than in heavily infested areas. However, in areas with high level of infestation there are few new farms left to be infested. The official wild oats register is a valuable tool in regulations aiming to limit spread. The register also provides a tool to follow up infested farms. The register would be even more useful if inspection for infestation on new farms had been more systematic. Wild oats is no longer devastating even in cereal monocropping, due to cost efficient herbicides. However, in Norway an increasing area is infested with wild oats. The infestation may vary from only a few plants to total coverage of the field. In cereal monocropping chemical treatment with and without hand roguing is the only feasible control methods. Hand roguing alone is expensive and ineffective even on modest infestation. The structural changes in cereal farming result in more farms being managed by entrepreneurs. Field managed by entrepreneurs promotes use of herbicide even on small infestations since this is a cost effective measure to control the weed. Less official control of cereal fields can also be expected. The economical consequences are thus expected to be high. The economical consequences can be even higher in organic farming if the most profitable rotation has to be changed to a less profitable one because of wild oats infestation.

Abstract

The detection in 1999 of the pine wood nematode (PWN), Bursaphelenchus xylophilus, in Portugal triggered survey activities in many European countries. With the assumption that PWN would reach frequency 10 times lower than the native B. mucronatus and the requirement of a 95 % confidence limit suggested 2 995 samples to be required for a safe statement on the absence of PWN from the territory surveyed. Samples were taken from 10 circular areas with 50 km diameter erected from a point of import of risk materials. In the period 2000-2006 3 165 wood samples, 2 880 from Pinus sylvestris, 279 from Picea abies and 6 from unknown wood, were collected from 446 logging sites, in 84 municipalities and 13 counties. Of the total material 85 % of the samples came from cutting wastes, timber or lying trees. Wood showing signs of insect activity (incl. Monochamus) formed 73 % of the total material. Nematodes were recorded in 85 % of the samples. The order Rhabditida was most frequent, followed by the orders Aphelenchida, Tylenchida and Dorylaimida. Rhabditid nematodes were equally frequent in pine and spruce, while Aphelenchida (Aphelenchus, Aphelenchoides, Cryptaphelenchus, Seinura and Bursaphelenchus) and Tylenchida (Filenchus, Lelenchus, Ditylenchus, Deladenus and Nothotylenchus) tended to be more common in pinewood. Aphelenchoides was the most common genus. The genus Bursaphelenchus occurred in 1 % of the samples. B. mucronatus was detected in 0,3 % of the samples and most often in cutting waste of pine. The pine wood nematode (PWN), B. xylophilus, was not detected in this survey. The unexpected low natural occurrence of B. mucronatus indicates that the number of potential niches for PWN also is lower than expected, and hence it will be necessary to continue this surveillance program to reach 10 000 samples. The present zone sites in central and south-eastern Norway will be supplemented with 1-2 zone sites in southwestern region of the country. In the future these zone sites will function as permanent observation areas. Care will also be taken to collect all samples from detached wood with signs of Monochamus activity.

Abstract

In this survey of 2002, 600 samples were collected from 83 forest blocks in the counties Akershus, Buskerud, Oppland and Østfold. The sampling activity involved 16 municipallities situated mainly within the three zone sites A, B, and C. Samples from Scots pine (Pinus sylvestris) formed 89%, while samples of Norway spruce (Picea abies) made up 10% of the total sample volume. Timber and forest debris were the most common objects sampled. Sixty-five percent of the pine samples and 81% of the spruce samples showed signs of Monochamus activity. Nematodes were common and occurred in 94% of the samples analysed. Thirteen samples of pinewood were positive for the genus Bursaphelenchus. Bursaphelenchus mucronatus was recorded for the third time in Norway, and was detected in forest debris attacked by Monochamus at Bjørdalen in the municipality of Eidsberg in the county of Østfold. The pine wood nematode Bursaphelenchus xylophilus was not detected in this survey.

Abstract

In this survey of 2003, 600 samples were collected from 96 forest blocks in the counties of Aust-Agder and Vest-Agder in southern Norway. The sampling activity involved 19 municipalities situated mainly within the two zone sites D and E close to Kristiansand and Arendal. Samples from Scots pine (Pinus sylvestris) formed 92%, while samples of Norway spruce (Picea abies) made up 8% of the total sample volume. Timber and forest debris was the most common objects sampled. Ninety-eight percent of the samples, regardless of tree species, showed signs of Monochamus activity. Nematodes were common and occurred in 90% of the samples analysed. Eight samples of pinewood were positive for the genus Bursaphelenchus. This genus did not occur in spruce. Bursaphelenchus mucronatus was detected in 6 samples of forest debris of pine attacked by Monochamus and collected in the county of Aust-Agder. In the municipality of Evje and Hornes B. mucronatus was detected at Skjerkelia and Sutestad. In the municipality of Froland the nematode was found in two samples from Budalsfjellet, and in one sample from Mjålandsvatn. In the municipality of Birkenes one sample from Vågsdalen contained B. mucronatus. This is the fourth report on the occurrence of B. mucronatus in Norway. The pine wood nematode Bursaphelenchus xylophilus was not detected.

Abstract

In 2001, a zone site C, was established as a circular areas with 50 km radius and centred in Greåker close to Sarpsborg in South-eastern Norway. Zone site C is complementary to the similar zone sites A and B established in 2000. From June 2001 to December 2002, 601 wood samples were collected from 66 forest blocks, all situated within the 3 existing zone sites A, B and C. The sampling was carried out in the provinces Akershus, Buskerud, Vestfold and Østfold, but was concentrated to the South-eastern region, where 399 samples were taken from 45 forest blocks in the province of Østfold. Samples from Scots pine (Pinus sylvestris) formed 96% of the collected material, while Norway spruce (Picea abies) was a minor fraction. Lying trees and various kinds of detached wood formed the main part of the objects sampled. The frequency of objects showing signs of attack by wood boring insects was 44%. Some samples were also taken in Porsgrunn in the province of Telemark from a consignment of spruce imported from Russia. Nematodes were often more common in samples from objects with signs of insect activity. In four samples, all from lying pine trees, nematodes belonging to the genus Bursaphelenchus were detected. Bursaphelenchus mucronatus was recorded for the second time in Norway, and occurred in a lying pine tree attacked by Monochamus at Ombudstvedt in the municipality of Våler in the province of Østfold. The pine wood nematode Bursaphelenchus xylophilus was not detected, nor in forests or in 5 samples from spruce imported from Russia

Abstract

Two zone sites, i.e. two circular areas with 50 km radius, were established in southern Norway. The zone sites were centred in Tofte (the location of a major pulp mill) and in Drammen (the site of a major timber yard). From June to October 2000, 66 forest blocks were visited, 65 of which were situated within the zone site areas. Samples were collected from 40 forest blocks, especially from wood attacked by wood boring insects. At 34 forest blocks, trees of Scots pine, Pinus sylvestris, or Norway spruce Picea abies were provided as trap-logs for Monochamus spp. This material will be sampled in the survey of 2001. Some samples were also taken from a wood chip pile and from imported wood material. The total number of wood samples analysed for nematodes were 275. Out of these, 214 samples were collected from forest trees, stumps, timber and logging wastes of P. sylvestris and P. abies. Three samples contained nematodes belonging to the genus Bursaphelenchus, but the Pine Wood Nematode (PWN), B. xylophilus, was not detected. Similarly, this nematode was not detected in the 10 samples of wood chips, or in the 25 samples of imported lumber or in the 26 samples of imported solid wood packing material. In order reach the minimal number of 3000 samples within reasonable time, the number of samples for the next survey season of 2001 needs to be increased drastically. To achieve this, the sampling will continue within the existing zone sites, and be extended into new zone sites to be established in 2001.