Til dokument

Sammendrag

The nitrogen cycle has been radically changed by human activities1 . China consumes nearly one third of the world’s nitrogen fertilizers. The excessive application of fertilizers2,3 and increased nitrogen discharge from livestock, domestic and industrial sources have resulted in pervasive water pollution. Quantifying a nitrogen ‘boundary’4 in heterogeneous environments is important for the effective management of local water quality. Here we use a combination of water-quality observations and simulated nitrogen discharge from agricultural and other sources to estimate spatial patterns of nitrogen discharge into water bodies across China from 1955 to 2014. We find that the critical surface-water quality standard (1.0 milligrams of nitrogen per litre) was being exceeded in most provinces by the mid-1980s, and that current rates of anthropogenic nitrogen discharge (14.5 ± 3.1 megatonnes of nitrogen per year) to fresh water are about 2.7 times the estimated ‘safe’ nitrogen discharge threshold (5.2 ± 0.7 megatonnes of nitrogen per year). Current efforts to reduce pollution through wastewater treatment and by improving cropland nitrogen management can partially remedy this situation. Domestic wastewater treatment has helped to reduce net discharge by 0.7 ± 0.1 megatonnes in 2014, but at high monetary and energy costs. Improved cropland nitrogen management could remove another 2.3 ± 0.3 megatonnes of nitrogen per year—about 25 per cent of the excess discharge to fresh water. Successfully restoring a clean water environment in China will further require transformational changes to boost the national nutrient recycling rate from its current average of 36 per cent to about 87 per cent, which is a level typical of traditional Chinese agriculture. Although ambitious, such a high level of nitrogen recycling is technologically achievable at an estimated capital cost of approximately 100 billion US dollars and operating costs of 18–29 billion US dollars per year, and could provide co-benefits such as recycled wastewater for crop irrigation and improved environmental quality and ecosystem services.

Til dokument

Sammendrag

Crop models are widely used to evaluate the response of crop growth to drought. However, over large geographic regions, the most advanced models are often restricted by available computing resource. This limits capacity to undertake uncertainty analysis and prohibits the use of models in real-time ensemble forecasting systems. This study addresses these concerns by presenting an integrated system for the dynamic prediction and assessment of agricultural yield using the top-ranked Sunway TaihuLight supercomputer platform. This system enables parallelization and acceleration for the existing AquaCrop, DNDC (DeNitrification and DeComposition) and SWAP (Soil Water Atmosphere Plant) models, thus facilitating multi-model ensemble and parameter optimization and subsequent drought risk analysis in multiple regions and at multiple scales. The high computing capability also opens up the possibility of real-time simulation during droughts, providing the basis for more effective drought management. Initial testing with varying core group numbers shows that computation time can be reduced by between 2.6 and 3.6 times. Based on the powerful computing capacity, a county-level model parameter optimization (2043 counties for 1996–2007) by Bayesian inference and multi-model ensemble using BMA (Bayesian Model Average) method were performed, demonstrating the enhancements in predictive accuracy that can be achieved. An application of this system is presented predicting the impacts of the drought of May–July 2017 on maize yield in North and Northeast China. The spatial variability in yield losses is presented demonstrating new capability to provide high resolution information with associated uncertainty estimates.

Til dokument

Sammendrag

Precipitation is an important source of soil water, which is critical to crop growth, and is therefore an important input when modelling crop growth. Although advances are continually being made in predicting and recording precipitation, input uncertainty of precipitation data is likely to influence the robustness of parameter estimate and thus the predictive accuracy in soil water and crop modelling. In this study, we use the Bayesian total error analysis (BATEA) method for the water-oriented crop model AquaCrop to identify the input uncertainty from multiple precipitation products respectively, including gauge-corrected grid dataset CPC, remote sensing based TRMM and reanalysis based ERA-Interim. This methodology uses latent variables to correct the input data errors. Adopting a single-multiplier method for precipitation correction, we simulate maize growth in both field and regional levels in China for a range of different possible climatic scenarios. Meanwhile, we use the average of multiple products for model driving in comparison. The results show that the BATEA method can consistently reduce uncertainty for crop growth prediction among different precipitation products. In regional simulation, the improvements for the three products are 1%, 7.3% and 2.8% on average in drought scenarios. These results imply the BATEA approach can be of great assistance for crop modeling studies and agricultural assessments under future changing climates.