Vedlegg

PhD thesisCV

Biografi

Utdanning:
2013 - 2017 Wageningen University
PhD med tema “Winter hydrology and soil erosion processes in an agricultural catchment in Norway"

Dataferdigheter:
Hydrologiske modeller: LISEM, UEBGrid, Hydrus, SHAW
GIS: ESRI/ArcGIS 10 (ArcMap), PCRaster
Vitenskapelig bildebearbeidingsprogramvare: ImageJ

Interesser: nedbørsfelt hydrologi, tiltaksanalyse for flomdempende tiltak, vitenskaplig bruk av droner, bærekraftig bruk av jordsmonn

Les mer

Sammendrag

På oppdrag fra vannområdet Bunnefjorden med Årungen- og Gjersjøvassdraget (PURA) er den empiriske modellen Agricat 2 brukt til å beregne potensialet for erosjon og fosforavrenning fra jordbruksarealer i 16 tiltaksområder, ved faktisk drift i 2017. Arealfordelingen av faktisk drift (vekst, jordarbeiding og miljøtiltak) i 2017, har framkommet av registerdata fra Landbruksdirektoratet og føringer/informasjon fra Follo Landbrukskontor, og er fordelt på de dyrka arealene etter bestemte rutiner i modellen. Arealfordelingsrutinen i modellen ga følgende utbredelse av kombinasjon vekst/jordarbeiding i vannområdet for 2017: 31 % stubb (jordarbeiding vår eller direktesåing), 14 % gras, 38 % vårkorn med høstpløying, 4 % høstkorn med høstpløying, 10 % høstharving til vår- og høstkorn, og 3 % poteter og grønnsaker. Den største forskjellen fra 2016 var mindre høstkornareal og større areal med stubb og høstpløying med vårkorn i 2017. Arealfordelingen varierte mellom tiltaksområder. Eksisterende grasdekte buffersoner og fangdammer inngikk også i beregningene. Jord- og fosfortap i vannområdet PURA i 2017 ble beregnet til henholdsvis 4,3 kilotonn SS og 8,6 tonn TP, dvs. på samme nivå som i 2014 og 2015, og litt lavere enn i 2016. For individuelle tiltaksområder varierte jordtapet fra nær 0 til 2 kilotonn, og fosfortap fra nær 0 til knapt 4 tonn. I fem tiltaksområder var fosfortapet noe økt i 2017 sammenliknet med i 2016, i resten av tiltaksområdene var fosfortapet redusert eller tilnærmet uendret. Endret drift bidro til å forklare forskjellene.

Til dokument

Sammendrag

In cold climate regions a significant fraction of annual soil erosion in agricultural land occurs during snowmelt and rain on partially frozen soils. Physically based and spatially distributed soil erosion models have proved to be good tools for understanding the processes occurring at catchment scale during rainfall erosion. However, most existing erosion models do not account for snow in a suitable way. A combination of the UEBGrid snow pack model and the LISEM erosion model was therefore used in this study. The aim was to test and validate this model combination and to assess its utility in relation to quantification and process understanding. Applying this model combination to simulate surface runoff and soil erosion showed that, in principle, it is possible to satisfactorily simulate surface runoff and observed soil erosion patterns during winter. The values for the calibration parameters were similar for the two chosen winter periods when the rainfall and snowmelt episodes occurred. However, the calibration procedure showed that the utility of this combination had several limitations. It is hoped that this study can help to improve existing models and trigger new developments in including snow pack dynamics and soil freezing and thawing in soil erosion models.

Til dokument

Sammendrag

In the Nordic countries, soil erosion rates in winter and early spring can exceed those at other times of the year. In particular, snowmelt, combined with rain and soil frost, leads to severe soil erosion, even, e.g., in low risk areas in Norway. In southern Norway, previous attempts to predict soil erosion during winter and spring have not been very accurate owing to a lack of catchment-based data, resulting in a poor understanding of hydrological processes during winter. Therefore, a field study was carried out over three consecutive winters (2013, 2014 and 2015) to gather relevant data. In parallel, the development of the snow cover, soil temperature and ice content during these three winters was simulated with the Simultaneous Heat and Water (SHAW) model for two different soils (sand, clay). The field observations carried out in winter revealed high complexity and diversity in the hydrological processes occurring in the catchment. Major soil erosion was caused by a small rain event on frozen ground before snow cover was established, while snowmelt played no significant role in terms of soil erosion in the study period. Four factors that determine the extent of runoff and erosion were of particular importance: (1) soil water content at freezing; (2) whether soil is frozen or unfrozen at a particular moment; (3) the state of the snow pack; and (4) tillage practices prior to winter. SHAW performed well in this application and proved that it is a valuable tool for investigating and simulating snow cover development, soil temperature and extent of freezing in soil profiles.

Til dokument

Sammendrag

Shallow (<1 m deep) snowpacks on agricultural areas are an important hydrological component in many countries, which determines how much meltwater is potentially available for overland flow, causing soil erosion and flooding at the end of winter. Therefore, it is important to understand the development of shallow snowpacks in a spatially distributed manner. This study combined field observations with spatially distributed snow modelling using the UEBGrid model, for three consecutive winters (2013–2015) in southern Norway. Model performance was evaluated by comparing the spatially distributed snow water equivalent (SWE) measurements over time with the simulated SWE. UEBGrid replicated SWE development at catchment scale with satisfactory accuracy for the three winters. The different calibration approaches which were necessary for winters 2013 and 2015 showed the delicacy of modelling the change in shallow snowpacks. Especially the refreezing of meltwater and prohibited runoff and infiltration of meltwater by frozen soils and ice layers can make simulations of shallow snowpacks challenging.

Sammendrag

Redusert og endret jordarbeiding har vært et av de viktigste tiltakene mot erosjon og tap av næringsstoffer fra jordbruksarealer siden begynnelsen på 1990-tallet. Redusert jordarbeiding betyr bare harving i stedet for pløying, mens endret jordarbeiding betyr pløying om våren i stedet for høsten. Avrenningsforsøk som startet på 1980-tallet viser stor effekten av redusert og endret jordarbeiding på erosjon og næringsstofftap på forholdsvis bratte jordbruksarealer. Det eksisterer derimot kun få undersøkelser av jordarbeidingseffekter på arealer med liten helling, på tross av at slike arealer utgjør størsteparten av jordbruksarealene der det dyrkes korn.....

Til dokument

Sammendrag

In the Nordic countries, changes in pore structure during winter can affect e.g. water transport capacity in soils after winter. A reduction in pore space can cause an increase in runoff volume due to snowmelt and rain, resulting in flooding and soil erosion. This study quantified the effect of freezing-thawing cycles (FTCs) on the macropore structure of a silt and a sandy soil. Six consecutive FTCs were applied to intact soil samples, which were scanned after 0, 1, 2, 4 and 6 FTCs with an industrial X-ray scanner. Using state-of-the-art image processing and analysis techniques, changes in soil macropore network characteristics were quantified. The results showed that freezing-thawing affected the looser sandy soil more than the silt with its more cohesive structure. However, in both soils freezing-thawing had a negative effect on properties of macropore networks (e.g. reduction in macroporosity, thickness and specific surface area of macropores). These findings can help improve understanding of how undisturbed soils react to different winter conditions, which can be beneficial in the development of models for predicting flooding and soil erosion.