Tonje Ingeborg Økland

Seniorforsker

(+47) 901 61 233
tonje.okland@nibio.no

Sted
Ås - Bygg H8

Besøksadresse
Høgskoleveien 8, 1433 Ås

Sammendrag

Short-term (three to four years) effects of forest harvesting on soil solution chemistry were investigated at two Norway spruce sites in southern Norway, differing in precipitation amount and topography. Experimental plots were either harvested conventionally (stem-only harvesting, SOH) or whole trees, including crowns, twigs and branches were removed (whole-tree harvesting, WTH), leaving residue piles on the ground for some months before removal. The WTH treatment had two sub-treatments: WTH-pile where there had been piles and WTH-removal, from where residues had been removed to make piles. Increased soil solution concentrations of NO3–N, total N, Ca, Mg and K at 30 cm depth, shown by peaks in concentrations in the years after harvesting, were found at the drier, less steep site in eastern Norway after SOH and WTH-pile, but less so after WTH-removal. At the wetter, steeper site in western Norway, peaks were often observed also at WTH-removal plots, which might reflect within-site differences in water pathways due largely to site topography.

Sammendrag

Effects of clear-cut harvesting on ground vegetation plant species diversity and their cover are investigated at two Norway spruce sites in southern Norway, differing in climate and topography. Experimental plots at these two sites were either harvested conventionally (stem-only harvesting) or whole trees including crowns, twigs and branches were removed (whole-tree harvesting), leaving residue piles on the ground for some months. We compare the number of plant species in different groups and their cover sums before and after harvesting, and between the different treatments, using non-parametric statistical tests. An overall loss of ground vegetation biodiversity is induced by harvesting and there is a shift in cover of dominant species, with negative effects for bryophytes and dwarf shrubs and an increase of graminoid cover. Differences between the two harvesting methods at both sites were mainly due to the residue piles assembled during whole-tree harvesting and the physical damage made during the harvesting of residues in these piles. The presence of the residue piles had a clear negative impact on both species numbers and cover. Pile residue harvesting on unfrozen and snow-free soil caused more damage to the forest floor in the steep terrain at the western site compared to the eastern site.

Sammendrag

Whole-tree harvest (WTH), i.e. harvesting of forest residues (twigs, branches and crown tops) in addition to stems, for bioenergy purposes may lead to biodiversity loss and changes in species composition in forest ground vegetation, which in turn also will affect soil properties. Effects of clear-cut harvesting on ground vegetation have been investigated at two Norway spruce sites in southern east and western Norway, respectively, differing in climate and topography. Experimental plots at these two sites were either harvested conventionally (stem-only harvest, SOH), leaving harvest residues spread on the site,or WTH was carried out, with the residues collected into piles at the site for six - nine months prior to removal. Vegetation plots in the eastern site were established and analysed before WTH and SOH in 2008 and reanalysed after harvesting in 2010, 2012 and 2014. In the western site vegetation plots were established before WTH and SOH in 2010 and reanalysed after harvesting in 2012 and 2014 (and planned for 2016). All vegetation plots are permanently marked. Pre-as well as post-harvesting species abundances of all species in each vegetation plot were each time recorded as percentage cover (vertical projection) and subplot frequency. Environmental variables (topographical, soil physical, soil chemical, and tree variables) were recorded only once; before WTH and SOH. Effec ts of WTH and SOH on ground vegetation biodiversity and cover are presented.

Til dokument

Sammendrag

Tree harvest and different harvesting methods may affect the soil carbon (C) pool in forest ecosystems. In con- ventional stem-only timber harvesting (SOH), branches and tops that are left in the forests may contribute to the build-up of the soil carbon pool. In whole-tree harvesting (WTH), inputs of organic matter from branches and tops are strongly reduced. We established field experiments at Gaupen, SE and Vindberg, SW Norway, to study the short-term effects of SOH and WTH on processes affecting the accumulation and loss of soil C. Logging residues on the WTH plots were collected in piles that were removed after 6 months, rendering two sub treatments (WTH- pile and WTH-removal areas). We weighed selected trees and logging residues, surveyed understorey biomass production, quantified pre-harvest soil C and nutrient pools down to 30 cm. Soil respiration was measured and soil water sampled monthly during the growing season, while temperature and moisture were measured continuously. Organic and mineral horizons were incubated at different temperatures to estimate potential C and N mineraliza- tion, and deep sequencing of the ITS2 barcode region of fungal DNA was performed on the samples. Litterbags were deployed in the SOH plots. The logging residues amounted to 2.2-2.4 kg C m-2 At Gaupen, the mean in situ soil respiration rates increased following harvest with all treatments, but were significantly higher in WTH-pile and SOH relative to the WTH- removal areas in the first year as well as the fourth year of treatment. The former rates included aboveground decomposing needles and twigs but excluded coarser branches. The observed increase in the WTH-removal areas may be related to decomposing roots, as well as to increased C mineralization partly due to the higher soil tem- peratures following harvest. Soil temperature was the single most important factor explaining the variability in soil respiration rates over all treatments. At Vindberg, a decrease in soil respiration was observed with all treatments in the second and third years following harvest. At both sites, decomposition of logging residues from needles was more rapid relative to twigs and fine roots. The decomposing residues released a substantial amount of nitrogen which was gradually reflected in the soil water at 30 cm soil depth. A considerable increase in the NO3-N concen- tration also in the WTH-removal areas in the second year following harvest suggests an increase in N availability from decomposing fine roots and/or soil organic matter. The increased N availability in the WTH-removal areas was supported by results from short term lab incubations of undisturbed soil from the forest floor. The changes in the WTH-removal areas were also reflected in the soil fungal diversity: saprophytic ascomycetes on decaying plant material showed a striking increase in all treatments. For the WTH-removal areas, this may, again, be related to the increased input of root litter; however, the decrease in mycorrhizal basidiomycete species and the vigorous increase of ascomycetes following harvest may also affect the C mineralization of soil organic matter.

Sammendrag

Vegetasjonsovervåking basert på konseptet for vegetasjonsøkologiske undersøkelser (T. Øk-land 1990, 1996, R. Økland & Eilertsen 1993, Eilertsen & Stabbetorp 1997, Bakkestuen et al. 2001, T. Økland et al. 2001) ble etablert for ca 25 år siden og omfatter 17 referanseområder (figur 7.1). Med to unntak reanalyseres disse fortsatt jevnlig. Ti overvåkingsområder ble etab-lert i granskog av NIJOS (nå Norsk institutt for skog og landskap) i perioden 1988–1992. I Sol-homfjell etablerte Naturhistorisk museum, Universitetet i Oslo i 1988 et overvåkingsområde i barskog (gran- og furuskog) som etter hvert har blitt inkludert i TOV som TOV-granskogsområde. Seks områder ble etablert i bjørkeskog av NINA fra 1990 til 1993 (TOV-bjørkeskogsområder). Områdene spenner ut viktige klimagradienter i Norge (jf Moen 1998) og ble opprinnelig etablert for å fange opp variasjonen i belastning av langtransporterte luftfor-urensinger i Norge (jf Tørseth & Semb 1997).

Til dokument

Sammendrag

Overvåkingen i TOV omfatter viktige biologiske komponenter i vanlige boreale og lavalpine økosystemer. Det er forventet at overvåkingsvariablene vil respondere på ulike naturlige og menneskeskapte endringer. Her gis en kvalitativ vurdering av hovedmønstre i mulige påvirk-ninger. Klimaendringer Flere av overvåkingskomponentene i bjørkeskog og granskog viser endringer som kan knyttes til observerte klimavariasjoner etter ca 1990. Det er generell sammenheng mellom plantearte-nes temperaturfølsomhet og deres fordeling med høyden over havet. Store moser i markvege-tasjonen viser økt mengde i flere granskogsområder og dels bjørkeskogsområder, noe som trolig skyldes lengre vekstsesong pga milde høster, spesielt fra midten av 1990-tallet. Økning-en for store moser i mange av granskogsområdene har ført til fortetting av bunnsjiktet, med reduksjon i mengde og artsmangfold av spesielt levermoser. I flere av granskogsområdene, som Grytdalen, Otterstadstølen og Gutulia, er det totale artsmangfoldet i markvegetasjonen betydelig redusert i løpet av overvåkingsperioden. I enkelte nordlige bjørkeskogsområder (Åmotsdalen, Gutulia, Børgefjell) har lokalklimaet vært mer variabelt, og markvegetasjonen her har de siste årene vist tendens mot noe tørrere vekstforhold. På undersøkte trær i flere av overvåkingsområdene har mer varmekjære lavarter som vanlig kvistlav gått fram, mens kulde-tolerante arter som snømållav har gått tilbake og ev. vist høyere skadefrekvens. Tidspunktet for egglegging hos fluesnappere viser nær sammenheng med vårens utvikling (målt ved mid-deltemperaturen i mai). Mildere klima og lengre produksjonssesong bør gi økning i fuglebe-standene i fjellet. En bestandsindeks for fugler i de fem overvåkingsområdene i fjellet (Møs-vatn, Gutulia, Åmotsdalen, Børgefjell, Dividalen) viser ikke signifikant endring for arter knyttet til skog i perioden 1990-2013, mens arter knyttet til åpne naturtyper har hatt signifikant nedgang. De siste årene har det vært episoder med ugunstige værforhold i hekketida eller sein og kald vår, noe som kan ha hatt negative konsekvenser for hekkestart og klekkesuksess, med mulig effekt på bestandsutviklingen for spurvefugl. Langtransporterte forurensinger Ulike effekter av langtransporterte forurensinger, som forsuring fra svovelforbindelser, gjøds-ling (eutrofiering) fra nitrogenforbindelser og akkumulering av miljøgifter, kan påvirke flora og fauna i TOV-områdene. Effektene av slik forurensing kan vise seg ved forskjeller i artssam-mensetning, bestandsvariasjoner eller reproduksjonssuksess mellom de sørligste områdene med mest forurensing og områder lenger nord med lavere belastning. De tydeligste effektene av endringer i forurensingsnivåer er knyttet til epifytter på faste prøvetrær i overvåkingsområ-dene, der særlig de sørlige og mest forurensete områdene viser en nedgang i skader på lav, samt framvekst av lav generelt og spesielt for forurensingsfølsomme arter som brunskjegg. Dette tyder på at reduksjon i svovelnedfall og forsuring de siste tiårene har hatt en positiv effekt på lavfloraen. Mengden av alger på trærne i det sørligste området Lund har økt kraftig i over-våkingsperioden, noe som dels kan skyldes et mildere og fuktigere klima, men ganske sikkert også økt tilførsel av nitrogen. Sterk økning av graset blåtopp og observasjoner av alger i mark-vegetasjonen i Lund settes også i sammenheng med høy nitrogenavsetning. Algedekning på trær og bakkevegetasjonen er også observert i enkelte granskogsområder, spesielt tydelig i det sørligste området Paulen. Terrestrisk miljø, overvåking, klimavariasjon, forurensinger, naturlig dynamikk, markvegetasjon, epifytter, smågnagere, fugl, reproduksjon, bestandsvariasjoner, artssammensetning

Til dokument

Sammendrag

The collapse of the Soviet Union in the Central Asian countries has led to enormous challenges for them in ensuring a sustainable environment. Weak economies and lack of expertise in environmental sciences were important reasons for the Norwegian support to the environmental sector in this region. The State Forest Service of the Kyrgyz Republic and the Norwegian Forestry Group initiated the TEMP project, later renamed TEMP-CA, in the Kyrgyz Republic in 2004. Activities in the Republic of Tajikistan were included in 2007 and in the Republic of Uzbekistan from 2008. The forestry sectors in the Kyrgyz Republic and neighbouring countries in Central Asia, surrounding the Fergana Valley, are closely linked to the environmental and emergency planning sectors. Overgrazing and overharvesting have contributed to a dramatic decline in forest cover. The TEMP-CA project contributes to a better understanding of environmental problems and sustainable forestry in Central Asia. […]

Til dokument

Sammendrag

The collapse of the Soviet Union in the Central Asian countries has led to enormous challenges for them in ensuring a sustainable environment. Weak economies and lack of expertise in environmental sciences were important reasons for the Norwegian support to the environmental sector in this region. The State Forest Service of the Kyrgyz Republic and the Norwegian Forestry Group initiated the TEMP project, later renamed TEMP-CA, in the Kyrgyz Republic in 2004. Activities in the Republic of Tajikistan were included in 2007 and in the Republic of Uzbekistan from 2008. […]

Til dokument

Sammendrag

The collapse of the Soviet Union in the Central Asian countries has led to enormous challenges for them in ensuring a sustainable environment. Weak economies and lack of expertise in environmental sciences were important reasons for the Norwegian support to the environmental sector in this region. The State Forest Service of the Kyrgyz Republic and the Norwegian Forestry Group initiated the TEMP project, later renamed TEMP-CA, in the Kyrgyz Republic in 2004. Activities in the Republic of Tajikistan were included in 2007 and in the Republic of Uzbekistan from 2008.

Til dokument

Sammendrag

The collapse of the Soviet Union in the Central Asian countries has led to enormous challenges for them in ensuring a sustainable environment. Weak economies and lack of expertise in environmental sciences were important reasons for the Norwegian support to the environmental sector in this region. The State Forest Service of the Kyrgyz Republic and the Norwegian Forestry Group initiated the TEMP project, later renamed TEMP-CA, in the Kyrgyz Republic in 2004. Activities in the Republic of Tajikistan were included in 2007 and in the Republic of Uzbekistan from 2008.

Til dokument

Sammendrag

The collapse of the Soviet Union in the Central Asian countries has led to enormous challenges for them in ensuring a sustainable environment. Weak economies and lack of expertise in environmental sciences were important reasons for the Norwegian support to the environmental sector in this region. The State Forest Service of the Kyrgyz Republic and the Norwegian Forestry Group initiated the TEMP project, later renamed TEMP-CA, in the Kyrgyz Republic in 2004. Activities in the Republic of Tajikistan were included in 2007 and in the Republic of Uzbekistan from 2008. The forestry sectors in the Kyrgyz Republic and neighbouring countries in Central Asia, surrounding the Fergana Valley, are closely linked to the environmental and emergency planning sectors. Overgrazing and overharvesting have contributed to a dramatic decline in forest cover. The TEMP-CA project contributes to a better understanding of environmental problems and sustainable forestry in Central Asia. The TEMP-CA project has promoted institutional co-operation between Norway and the Central Asian countries as well as between different institutions both within and between the countries of Central Asia. Increased expertise for scientists, fieldworkers, laboratory staff and staff in different forest departments as well as institutional development in general are important outputs from the TEMP-CA project. The Umalak monitoring site in Tashkent region, the Republic of Uzbekistan, was the tenth of ten monitoring sites established in forests in Central Asia: 1: ”Kara-Koi” in the Osch oblast, the Kyrgyz Republic. 2: ”Sogot in the Jalal-Abad oblast, the Kyrgyz Republic. 3: “Dugoba” in Batken oblast, the Kyrgyz Republic. 4: “Besh-Tash” Talas oblast, the Kyrgyz Republic. 5: “Sary-Chelek”, in Jalal-Abad oblast, the Kyrgyz Republic. 6: “Navobod” in Sogdi oblast, the Republic of Tajikistan. 7: “Gauyan” in Batken oblast, the Kyrgyz Republic. 8: “Zaamin” in Djizak region, the Republic of Uzbekistan. 9: “Urumbash” in Jalal-Abad oblast, the Kyrgyz Republic. 10: “Umalak Teppa”, Tashkent region, the Republic of Uzbekistan. […]

Til dokument

Sammendrag

The collapse of the Soviet Union in the Central Asian countries has led to enormous challenges for them in ensuring a sustainable environment. Weak economies and lack of expertise in environmental sciences were important reasons for the Norwegian support to the environmental sector in this region. The State Forest Service of the Kyrgyz Republic and the Norwegian Forestry Group initiated the TEMP project, later renamed TEMP-CA, in the Kyrgyz Republic in 2004. Activities in the Republic of Tajikistan were included in 2007 and in the Republic of Uzbekistan from 2008. The forestry sectors in the Kyrgyz Republic and neighbouring countries in Central Asia, surrounding the Fergana Valley, are closely linked to the environmental and emergency planning sectors. Overgrazing and overharvesting have contributed to a dramatic decline in forest cover. The TEMP-CA project contributes to a better understanding of environmental problems and sustainable forestry in Central Asia. The TEMP-CA project has promoted institutional co-operation between Norway and the Central Asian countries as well as between different institutions both within and between the countries of Central Asia. Increased expertise for scientists, fieldworkers, laboratory staff and staff in different forest departments as well as institutional development in general are important outputs from the TEMP-CA project. […]

Til dokument

Sammendrag

The collapse of the Soviet Union in the Central Asian countries has led to enormous challenges for them in ensuring a sustainable environment. Weak economies and lack of expertise in environmental sciences were important reasons for the Norwegian support to the environmental sector in this region. The State Forest Service of the Kyrgyz Republic and the Norwegian Forestry Group initiated the TEMP project, later renamed TEMP-CA, in the Kyrgyz Republic in 2004. Activities in the Republic of Tajikistan were included in 2007 and in the Republic of Uzbekistan from 2008. The forestry sectors in the Kyrgyz Republic and neighbouring countries in Central Asia, surrounding the Fergana Valley, are closely linked to the environmental and emergency planning sectors. Overgrazing and overharvesting have contributed to a dramatic decline in forest cover. The TEMP-CA project contributes to a better understanding of environmental problems and sustainable forestry in Central Asia.The TEMP-CA project has promoted institutional co-operation between Norway and the Central Asian countries as well as between different institutions both within and between the countries of Central Asia. Increased expertise for scientists, fieldworkers, laboratory staff and staff in different forest departments as well as institutional development in general are important outputs from the TEMP-CA project.

Til dokument

Sammendrag

The collapse of the Soviet Union in the Central Asian countries has led to enormous challenges for them in ensuring a sustainable environment. Weak economies and lack of expertise in environmental sciences were important reasons for the Norwegian support to the environmental sector in this region. The State Forest Service of the Kyrgyz Republic and the Norwegian Forestry Group initiated the TEMP project, later renamed TEMP-CA, in the Kyrgyz Republic in 2004. Activities in the Republic of Tajikistan were included in 2007 and in the Republic of Uzbekistan from 2008. The forestry sectors in the Republic of Tajikistan and neighbouring countries in Central Asia, surrounding the Fergana Valley, are closely linked to the environmental and emergency planning sectors. Overgrazing and overharvesting have contributed to a dramatic decline in forest cover. The TEMP-CA project contributes to a better understanding of environmental problems and sustainable forestry in Central Asia. The TEMP-CA project has promoted institutional co-operation between Norway and the Central Asian countries as well as between different institutions both within and between the countries of Central Asia. Increased expertise for scientists, fieldworkers, laboratory staff and staff in different forest departments as well as institutional development in general are important outputs from the TEMP-CA project.

Til dokument

Sammendrag

The collapse of the Soviet Union in the Central Asian countries has led to enormous challenges for them in ensuring a sustainable environment. Weak economies and lack of expertise in environmental sciences were important reasons for the Norwegian support to the environmental sector in this region. The State Forest Service of the Kyrgyz Republic and the Norwegian Forestry Group initiated the TEMP project, later renamed TEMP-CA, in the Kyrgyz Republic in 2004. Activities in the Republic of Tajikistan were included in 2007 and in the Republic of Uzbekistan from 2008. The forestry sectors in the Kyrgyz Republic and neighbouring countries in Central Asia, surrounding the Fergana Valley, are closely linked to the environmental and emergency planning sectors. Overgrazing and overharvesting have contributed to a dramatic decline in forest cover. The TEMP-CA project contributes to a better understanding of environmental problems and sustainable forestry in Central Asia. The TEMP-CA project has promoted institutional co-operation between Norway and the Central Asian countries as well as between different institutions both within and between the countries of Central Asia. Increased expertise for scientists, fieldworkers, laboratory staff and staff in different forest departments as well as institutional development in general are important outputs from the TEMP-CA project. The Gauyan monitoring site in Batken oblast in the Kyrgyz Republic was the seventh of ten monitoring sites established in forests in Central Asia: 1: ”Kara-Koi” in the Osch oblast, the Kyrgyz Republic. 2: ”Sogot in the Jalal-Abad oblast, the Kyrgyz Republic. 3: “Dugoba” in Batken oblast, the Kyrgyz Republic. 4: “Besh-Tash” Talas oblast, the Kyrgyz Republic. 5: “Sary-Chelek”, in Jalal-Abad oblast, the Kyrgyz Republic. 6: “Navobod” in Sogdi oblast, the Republic of Tajikistan. 7: “Gauyan” in Batken oblast, the Kyrgyz Republic. 8: “Zaamin” in Djizak region, the Republic of Uzbekistan. 9: “Urumbash” in Jalal-Abad oblast, the Kyrgyz Republic. 10: “Umalak Teppa”, Tashkent region, the Republic of Uzbekistan.

Til dokument

Sammendrag

The collapse of the Soviet Union in the Central Asian countries has led to enormous challenges for them in ensuring a sustainable environment. Weak economies and lack of expertise in environmental sciences were important reasons for the Norwegian support to the environmental sector in this region. The State Forest Service of the Kyrgyz Republic and the Norwegian Forestry Group initiated the TEMP project, later renamed TEMP-CA, in the Kyrgyz Republic in 2004. Activities in the Republic of Tajikistan were included in 2007 and in the Republic of Uzbekistan from 2008. The forestry sectors in the Kyrgyz Republic and neighbouring countries in Central Asia, surrounding the Fergana Valley, are closely linked to the environmental and emergency planning sectors. Overgrazing and overharvesting have contributed to a dramatic decline in forest cover. The TEMP-CA project contributes to a better understanding of environmental problems and sustainable forestry in Central Asia. The TEMP-CA project has promoted institutional co-operation between Norway and the Central Asian countries as well as between different institutions both within and between the countries of Central Asia. Increased expertise for scientists, fieldworkers, laboratory staff and staff in different forest departments as well as institutional development in general are important outputs from the TEMP-CA project. [...]

Sammendrag

Hogstavfall er nøkkelen til økt satsing på bioenergi i Norge. Men vil dette påvirke bærekraften i skogøkosystemet og skogproduksjonen? Blir skogsjorda mer næringsfattig? Endres sammensetningen av arter i vegetasjonen? Vil artsmangfoldet bli redusert? Blir det mindre av de soppene som bryter ned planterester? Dette er noen av spørsmålene vi prøver å besvare gjennom prosjektet «Økologiske virkninger av økt biomasseuttak fra skog i Norge» (ECOBREM), som varer fra 2009 til 2013.

Til dokument

Sammendrag

Forest fires release significant amounts of carbon dioxide into the atmosphere(1), but also convert a fraction of the burning vegetation to charred black carbon. Black carbon is hard to break down, and formation of this reserve therefore creates a long-term soil carbon sink(2-7). However, although soil black carbon pools are important for global carbon budgets, the spatial variation and dynamics of these pools are poorly understood(6-9). Here we examine the charcoal content of 845 soil samples collected from a broad range of boreal forest landscapes and climates in Scandinavia. We show that there is considerable variation in the distribution and carbon content of soil charcoal between forest landscapes; the landscape-level amount of soil carbon stored in charcoal ranged from 0 to 222 g Cm-2, with an average of 77 g Cm-2. The carbon concentration in the soil charcoal is significantly lower than that found in recently produced fresh charcoal, suggesting that charcoal carbon content decreases with time. Indeed, the median age of a subset of C-14-dated soil charcoal particles was 652 years, implying a rapid turnover compared with the expected median age of approximately 5,000 years if charcoal is persistent. Assuming that our measurements are representative of boreal forests worldwide, we estimate that boreal forest soils store 1 Pg of carbon in the form of charcoal, equivalent to 1% of the total plant carbon stock in boreal forests.

Sammendrag

Conclusions: Microtopographic relief is a good predictor of local species richness in Picea abies swamp forests, partly because larger vertical variability means higher within-plot habitat diversity with respect to the wet-dry gradient, and partly because qualitatively new microhabitats associated with steep slopes are added in drier sites. The relationship between species richness and microtopographic relief is context dependent, differing in complex ways among species groups and among sites with different environmental conditions.

Sammendrag

Acid rain emerged as an important environmental problem in China in the late 1970s. Many years of record economic growth have been accompanied by increased energy demand, greater coal combustion, and larger emissions of pollutants. As a result of significant emissions and subsequent deposition of sulfur, widespread acid rain is observed in southern and southwestern China. In fact, the deposition of sulfur is in some places higher than what was reported from the ?black triangle? in central Europe in the early 1980s. In addition, nitrogen is emitted from agriculture, power production, and a rapidly increasing number of cars. As a result, considerable deposition of pollutants occurs in forested areas previously thought to be pristine. Little is known about the effects of acid deposition on terrestrial and aquatic ecosystems in China. In this article, we present the current situation and what to expect in the future, largely on the basis of results from a five-year Chinese?Norwegian cooperative project. In the years ahead, new environmental challenges must be expected if proper countermeasures are not put into place.

Til dokument

Sammendrag

I rapporten presenteres resultatene for bearbeiding av data fra til sammen 561 overvåkingsflater fordelt på 11 granskogsområder i Norge. Alle flatene ble analysert 3 ganger med 5 års omløpstid i perioden 1988-2002 ved standardisert, sammenlignbar metodikk, her kalt ”Det norske konseptet for vegetasjonsøkologisk intensivovervåking”. Endringer fra første til annet omløp (1988–1997) er tidligere rapportert, sammen med resultater for bjørkeskogsflatene i TOV. De endringene som ble observert i første femårsperiode fortsetter til dels i den neste femårsperioden 1993–2002 og i tiårsperioden: Mens tilbakegangen for mange karplantearter i de sørligste/sørøstligste områdene (tolket som effekter av luftforurensing) fortsetter, stopper den generelle økningen i moseartenes mengde og artsantall (tolket som effekter av klimaforhold) opp. Karplantetilbakegangen i sør/sørøst utgjør et konsistent mønster for tiårsperioden sett under ett. For moser trer flere nyanser i endringsmønsteret fram gjennom den andre femårsperioden: Mengdeøkningen for store moser fortsetter. En tendens til at mindre moser reduseres i mengde i mange områder opptrer som et nytt endringsmønster. Mengdeøkningen for store moser forklares av generelt gode voksestedsforhold (hovedsakelig klimatiske forhold) for moser også i andre halvdel av 1990-årene og fram til 2002. De mindre mosenes tilbakegang forklares ved at disse kommer i en ”flaskehalssituasjon” med økende overvoksingsfare som resultat av de store mosenes mengdeøkning. Videre overvåking er nødvendig for å fastslå om denne nye tendensen vil forsterke seg ytterligere og føre til varig tap av moseartsmangfold og/eller ytterligere reduksjon av karplanteartsmangfoldet.

Sammendrag

Sulphur deposition is high at all IMPACTS sites and exceed maximum levels observed in Europe and North-America. Dry deposition equals or exceeds wet deposition. The IMPACTS data, in particular those from the remote Lei Gong Shan site clearly document long-range transport of air pollutants. Due to the actual and future energy combustion and emission strategy in China, the long-range transport of air pollutants may significantly increase with subsequent increased environmental damage in rural and remote areas in China. In addition to sulphur deposition, depositions of reactive nitrogen (nitric acid and ammonia) and calcium are also important and clearly demonstrate that pH alone is not a good indicator for acid deposition. High concentrations of ground level ozone, above critical levels for vegetation and forest, are observed at the Liu Xi He site in Guangdong province. Soil acidification gives rise to high concentrations of toxic aluminium in soil water at several sites. At the Tie Shan Ping site in Chongqing aluminium occurs at a level where long-term harmful effects on trees might be expected. Defoliation and mortality have been severe, however, fairly stable. Insect attacks are apparently a major cause, but enhanced insect attacks might be an indirect effect of health weakening due to acidification. Defoliation has been considerable also in Liu Chong Guan in Guiyang, while the three other catchments had minor defoliation only. High foliar nitrogen concentrations are seen in Lei Gong Shan in Guizhou and Cai Jia Tang in Hunan, accompanied by low P/N-ratios. Statistical tests of vegetation change, so far only implemented in Liu Chong Guan, revealed minor changes in number and abundances of vascular plants, but a significant decline in number of bryophytes. This decline is probably related to climatic year-to-year variations. Data from other catchments and longer time periods are needed to identify vegetation changes related to soil acidification or direct effects of air pollutants. Modelling results from Tie Shan Ping suggest that the currently planned 20% reduction in sulphur emissions is far from sufficient to avoid further acidification. As more data are generated, dose-response relationships, critical load estimates and model predictions will obviously be improved.

Sammendrag

Previous studies point at biogeographic (i.e. evolutionary and demographic) and ecological (i.e. habitat differentiation and disturbance) processes as the most important causes of spatial variation in species richness and species composition. We examined patterns of variation in similarity of vascular plant and bryophyte species composition among 150 1-m2 plots distributed semi-randomly over 11 Norwegian boreal swamp-forest localities that were species-rich islands in an otherwise species-poor forest landscape. For each plot, 53 environmental variables were recorded. By using CCA analyses, we found that c. 20% of the explainable variation in species composition was due to swamp-forest affiliation, in addition to the c. 35% that was due to environmental differences between swamp-forest localities. The unique component of the species composition of each swamp forest was also emphasised by analyses of floristic dissimilarity: plots were significantly more floristically dissimilar if situated in different than if situated in the same swamp forest, even after environmental differences had been corrected for. The lack of any significant relationship between floristic dissimilarity and geographical distance or swamp-forest area indicated that this pattern was not mainly due to demographic processes. We argue that the floristic distinctness of swamp forests, in particular those richer in species and soil nutrients, is due to a combination of factors among which randomness in establishment in infrequently occurring gaps ( ‘windows of opportunity’) are likely to be important. The unique combination of important determinants of the species composition found for boreal swamp forests supports the view that there exists a diversity of explanations for diversity and that these, to a large extent, are system- and/or area-specific.

Sammendrag

Change in crown density for Norway spruce (Picea abies) from 1988 to 1993 in three independent forest monitoring projects in southern Norway were compared. An increase in crown density was found in a countywide systematic random sample, whie measurements taken in old-growth forests reported a decline. These contradictory results may be due to: (1) high sensitivity of high-elevation forests to various kinds of environmental impact; (2) differences in stand age and management practice; and (3) different sensitivity to long distance airborne pollutants. The systematic random sample encompassed stans of several age classes from two counties, while the two other studies were restricted to old-growth forest in two smaller are as. A possibe explanation of the differences is thus that the three studies refer to differet popuations as a resut of different sampling strategies.